EDIT - bug #9683

Auto-initialize root bean
06/28/2021 09:35 AM - Andreas Miiller

Status: Closed Start date:

Priority: Highest Due date:

Assignee: Andreas Muller % Done: 100%
Category: cdmlib Estimated time: 0:00 hour
Target version: Release 5.25

Severity: normal Found in Version:

Description

Currently only related objects are auto-initialized by the AbstractBean.beanAutolnitializers . The root bean itself is not initialized this
way.

This leads to a situation where loading e.g. a field unit without any property path will throw an exception when
fieldUnit.getTitleCache() is called outside the initializing transaction.

Related issues:
Related to EDIT - task #9678: Remove Derived- and FieldUnitFacadeCacheStrategies Closed
Related to EDIT - bug #7874: TeamOrPersonBase entity can become unusable due ... Closed

Associated revisions

Revision 5348613b - 06/28/2021 09:39 AM - Andreas Muller

fix #9683 autoinitialize root bean

Revision bcbe5633 - 06/28/2021 11:28 AM - Andreas Miiller

ref #9683 add loadProxy method to services and adapt test to work with current auto initialize settings

Revision c1e0cb15 - 06/29/2021 09:30 PM - Andreas Miiller
ref #9683. ref #9664 fix tests in AgentServicelmplTest

Revision 61¢33dfd - 07/01/2021 03:01 PM - Andreas Miiller

ref #9683 adapt method name and javadoc

History

#1 - 06/28/2021 09:39 AM - Andreas Miiller
- Status changed from New to Resolved

- % Done changed from 0 to 50

Applied in changeset cdmlib|5348613baa59038220d4efd1e4a851e3ccdb6c58.

#2 - 06/28/2021 09:42 AM - Andreas Miiller
- Related to task #9678: Remove Derived- and FieldUnitFacadeCacheStrategies added

#3 - 06/28/2021 09:45 AM - Andreas Miiller

- Assignee changed from Andreas Muiller to Andreas Kohlbecker

#4 - 06/28/2021 11:27 AM - Andreas Miiller

- Related to bug #7874: TeamQOrPersonBase entity can become unusable due to replacement of the title caches on using getters added

#5 - 06/28/2021 02:10 PM - Andreas Kohlbecker
- Status changed from Resolved to Feedback

- Assignee changed from Andreas Kohlbecker to Andreas Miller

| think the new method, which by the way is only used for test classes, is irritating:

04/19/2024 1/3

https://dev.e-taxonomy.eu/redmine/projects/edit/repository/cdmlib/revisions/5348613baa59038220d4efd1e4a851e3ccdb6c58

public T loadProxy (int id);

The method name suggests that a proxy method is returned always. This is not the case as explained in the java doc of
org.hibernate.Session.load(Class<T> theClass, Serializable id) : "This method might return a proxied instance that is initialized on-demand, when a
non-identifier method is accessed."

This additional method, which is similar to other find*(..) methods makes the Cdm*Dao-API unclear as there are already many similar methods.

Can't you use getSession().load() in the test class directly or do you expect that the loadProxy() will be used in non test classes frequently? In the
latter case | suggest renaming it to just

public T load(int id);

#6 - 06/28/2021 03:06 PM - Andreas Miiller

- Assignee changed from Andreas Muiller to Andreas Kohlbecker

Andreas Kohlbecker wrote:
| think the new method, which by the way is only used for test classes, is irritating:
public T loadProxy (int id);
The method name suggests that a proxy method is returned always. This is not the case as explained in the java doc of
org.hibernate.Session.load(Class<T> theClass, Serializable id) : "This method might return a proxied instance that is initialized on-demand,
when a non-identifier method is accessed."
This additional method, which is similar to other find*(..) methods makes the Cdm*Dao-API unclear as there are already many similar methods.

Can't you use getSession().load() in the test class directly or do you expect that the loadProxy() will be used in non test classes frequently? In
the latter cased | suggest renaming it it to just

public T load(int id);

Yes, there is a need for this method if you want to attache an object to another one without initializing the object and without invoking cascade during
save afterwards. This is for performance reasons and it is e.g. needed for imports.

We may discuss the label for the method. | first thought about loadWithoutlnitializing but it is a bit long but maybe semantically better.

Purely "load(int)" has many disadvantages as all service.load(...) methods do explicitly initialize the return object(s) so it is very unexpected that only
load(int) does not initialize (while eg. load(uuid) or load(int, null) do initialize.

Also the service.loadProxy(int) will always return a proxy except for the situation where it is used within another transaction. This is because it will
only return a non-proxy if the object is already in the session which can only be the case if used within another transaction.

#7 - 06/28/2021 03:08 PM - Andreas Miuller

My comment was about the method in service. Maybe in dao it is slightly different as it is always used within a session. As this is not APl we could
more easily rename it to loadWithoutlnitializing as long method names are maybe not so relevant here.

#8 - 06/30/2021 03:09 PM - Andreas Kohlbecker
- Status changed from Feedback to Resolved

- Assignee changed from Andreas Kohlbecker to Andreas Miller

Ok, thank you for the explanation. | would prefer having the same method names in the DAP and service layer. We can keep loadProxy(int) if the
java doc of the methods are comprehensive enough to fully understand the implications of these methods. You could use the text of your comment
above for extending the java doc.

#9 - 07/01/2021 02:57 PM - Andreas Miiller
- Status changed from Resolved to Feedback
- Assignee changed from Andreas Miiller to Andreas Kohlbecker

- % Done changed from 50 to 90

| finally decided to rename the methods (in service and persistence) to loadWithoutlnitializing as this is semantically more correct. Also | slightly
adapted the javadoc.

So | guess we can close the ticket or are there any other open issues?

04/19/2024 2/3

#10 - 07/15/2021 09:02 AM - Andreas Kohlbecker
- Status changed from Feedback to Closed
- Assignee changed from Andreas Kohlbecker to Andreas Miiller

- % Done changed from 90 to 100

04/19/2024 3/3

http://www.tcpdf.org

