EDIT - bug #9147

Use StringBuilder in CdmUtils.concat() to avoid performance penalties
07/13/2020 02:03 PM - Andreas Kohlbecker

Status: Closed Start date:

Priority: New Due date:

Assignee: Andreas Muller % Done: 100%
Category: cdmlib Estimated time: 0:00 hour
Target version: Release 5.17

Severity: normal Found in Version:

Description

Use String.join() or one of the org.apache.commons.lang3.StringUtils.join(..) methods instead. These methods are making explicit
use of the StringBuffer class. CdmUltils.concat() can not be optimized by the jit, so for each string item the new String object needs to
be extended to new length, which is known to be a performance penalty.

Associated revisions

Revision 11¢127bf - 07/13/2020 02:05 PM - Andreas Kohlbecker

ref #9147 deprecating and commenting CdmUltils.concat()

Revision 8ab5e47c - 07/14/2020 09:46 AM - Andreas Miiller
fix #9147 use StringBuffer in concat()

Revision 63b2dbdb - 07/14/2020 03:20 PM - Andreas Miiller
fix #9147 use StringBuilder instead of StringBuffer

History

#1 - 07/13/2020 02:05 PM - Andreas Kohlbecker
- Description updated

#2 - 07/13/2020 02:17 PM - Andreas Miiller
- Status changed from New to Feedback
- Assignee changed from Andreas Miller to Andreas Kohlbecker

- Target version changed from Unassigned CDM tickets to Release 5.18

The semantics of String.join() and StringUtils.join() is different to the one of CdmUltils.concat() especially in terms of handling null values therefore |
disagree to setting it to @deprecated.
The current solution is very often used and has exactly the semantics that is needed for those cases.

If we want to improve performance solution would be to use StringBuffer within CdmULtils.concat()

#3 - 07/14/2020 09:46 AM - Andreas Miiller
- Status changed from Feedback to Resolved

- % Done changed from 0 to 50

Applied in changeset cdmlib|8ab5e47c6a6cal32{2e495900c3bdfc7743d69c8.

#4 - 07/14/2020 09:52 AM - Andreas Miiller

- Description updated

| changed the method to use StringBuffer now.

However, | tested the performance difference and it is true that using StringBuffer is a bit faster (at least for large amounts of data). However the

difference is small. Concatenating 1 Mio Strings of length 50 saved 200-300 ms, which is 0.0002 ms per concatenation. In most contexts this is not a
relevant issue compared to other operations. Only when concatenating huge numbers of strings it should be considered.

04/19/2024 1/3

https://dev.e-taxonomy.eu/redmine/projects/edit/repository/cdmlib/revisions/8ab5e47c6a6ca132f2e495900c3bdfc7743d69c8

Please review.

#5 - 07/14/2020 12:54 PM - Andreas Kohlbecker
- Status changed from Resolved to Feedback

- Assignee changed from Andreas Kohlbecker to Andreas Miller

Andreas Muller wrote:
| changed the method to use StringBuffer now.

However, | tested the performance difference and it is true that using StringBuffer is a bit faster (at least for large amounts of data). However the
difference is small. Concatenating 1 Mio Strings of length 50 saved 200-300 ms, which is 0.0002 ms per concatenation. In most contexts this is
not a relevant issue compared to other operations. Only when concatenating huge numbers of strings it should be considered.

Please review.

Since jdk1.5 StringBuilder should be used instead of StringBuffer in situations which are guaranteed single threaded operations on the strings to be
created.

When writing tests to compare the performance of + with StringBuilder or StringBuffer you need to write the code in a way which prevents the
compiler from optimizing the + operator. Otherwise Java will internally translate it to StringBuilder. Please see for example
https://www.java67.com/2015/05/4-ways-to-concatenate-strings-in-java.html for a comparison of several ways to concatenate strings: "You can
clearly see that given everything same, StringBuilder outperform all others. It's almost 3000 times faster than + operator.”

#6 - 07/14/2020 03:20 PM - Andreas Miuller

- Status changed from Feedback to Resolved

Applied in changeset cdmlib|63b2dbdb54bc105a8fa615e36eb754eeed6d3596.

#7 - 07/14/2020 03:22 PM - Andreas Miiller

- Assignee changed from Andreas Miller to Andreas Kohlbecker

Interesting. | didn't know about the differences between StringBuilder and StringBuffer. | adapted the code accordingly.

#8 - 07/14/2020 03:38 PM - Andreas Miuller

Andreas Kohlbecker wrote:

When writing tests to compare the performance of + with StringBuilder or StringBuffer you need to write the code in a way which prevents the
compiler from optimizing the + operator. Otherwise Java will internally translate it to StringBuilder. Please see for example
https://www.java67.com/2015/05/4-ways-to-concatenate-strings-in-java.html for a comparison of several ways to concatenate strings: "You can
clearly see that given everything same, StringBuilder outperform all others. It's almost 3000 times faster than + operator.”

There is an important mistake in the text of the above link. It is not the +operator which is expensive but the assignment(=) operator. And this is
especially the case if you assign very large strings as the data has to be copied from one place to another in memory then. The +operator itself is
handled like StringBuilder internally so it does not cost much more. You can test this by replacing in the given test class buffer.append(i); by s =
StringUtils.join(...) which internally uses StringBuilder. The result is about the same size as for the +operator so using StringBuilder has no result, but
because the code then also has an assignments per iteration it becomes slow.

Also you can see that if you use small number of iterations which results in smaller Strings to be copied the factor (which you say is 3000) is much
smaller (see last example on the given page). This is because the assignments are done only on small (realistically sized) strings for which the
difference is not so big.

So my conclusion is: there is no real problem with +operator but you need to be carefull with assignments (=) especially if you handle large Strings.
So it is good that we updated the method as it was also using assignment operators.

(Note: there is another error on the given test class. Before testing s.concat(Integer.toString(i)); they forgot to set parameter s back to empty string.
Concat has a much better performance than said on the page.)

#9 - 07/15/2020 02:58 PM - Andreas Miuller

- Subject changed from avoid using CdmUltils.concat() which causes performance penalties to Use StringBuilder in CdmUltils.concat() to avoid
performance penalties

#10 - 07/16/2020 08:48 PM - Andreas Kohlbecker
- Status changed from Resolved to Closed

- Assignee changed from Andreas Kohlbecker to Andreas Mliller

04/19/2024 2/3

https://www.java67.com/2015/05/4-ways-to-concatenate-strings-in-java.html
https://dev.e-taxonomy.eu/redmine/projects/edit/repository/cdmlib/revisions/63b2dbdb54bc105a8fa615e36eb754eeed6d3596
https://www.java67.com/2015/05/4-ways-to-concatenate-strings-in-java.html

- % Done changed from 50 to 100

With the final adaption of its subject this ticket is fully solved.

Code is perfect.

#11 - 08/19/2020 08:41 PM - Andreas Miiller

- Target version changed from Release 5.18 to Release 5.17

04/19/2024

3/3

http://www.tcpdf.org

