EDIT Common Data Model Library

Reference Documentation (Work in Progress)

EDIT

& ® @ Eurcpean
Distributed
0 Institute of

. . @ Tatendma

Ben Clark
Andreas Muller

EDIT Common Data Model Library: Reference Documentation (Work
in Progress)

EDIT

$ ® P Eurcpean

Distributed
0 Imstitute of
. . . Tta:-:l:-rt-:lrr.u

by Ben Clark and Andreas Miller

21
Copyright © 2009 EDIT - European Distributed Institute of Taxonomy - http://www.e-taxonomy.eu

The contents of thisfile are subject to theMozillaPublic License Version 1.1. See LICENSE.TXT at thetop of this packagefor thefull licenseterms.

Table of Contents

== o PP Vi
[, GEIING SEAMEA ...ttt e et e et e e et e e ena s 1
[1. ComMMON Data MOOEL ...ttt e et e et e e e e eees 3
L BBSE ClBSSES ..oetuieiiii ettt ettt 5
... 5
Versionable ENLITIESuuiiiiii e 6

Data model implementation and patterns used acrossthe CDMc.ccoeevieiiineiinnen, 6

2. ANNOLELiONS aNd MAKEN'Sccoiiiiei e 7
... 7

3. 1dentifialle ENLITIEScoeeee e 8
... 8

titl eCache andcacheStrategyGenerat Orcccooeeeeiiiiiiiiiiiiniiiieeeieeee 8

Recording Provenance using or i gi Nal SOUN Cecc.uiiiiiiiiiiiiiiiiiecci e 8

Indicating ownership and use using ri ght s Propertyocoeeiieiiiiiinneiiii e 8

[T, PEISISEENCE LBYEN ...ttt ettt e et e ettt e et et r e e e e nb e e eera e eeen 9
4. BaSIC PEISISIENCE . .eeviiieiiiii ettt 10
.. 10

Object INIIATIZALTONueieeii e 12

Listing objects and SOrting 1SScccuvuiiiiiiieeiie e 12

IV = £ Lo 111 0o H PP PTTR PP 13
.. 13

B. Free TEXE SEAICH ..ovui e 15
.. 15

IV APE IMEINOOS ...ttt et et et e e e e et e e bbb e e e aeaeas 16
A = Y = TP SPPPTT 17
.. 17

Paging RESUITSELSiiiiiiiieeiii et 19

8. Globally Unique ldentifier RESOIULIONuiiiiiiiieiiiii e 20
.. 20

9. Security and Identity within the CDM Library ..o 21
.. 21

Lo = 0 L1 PP PTTRTPPPTTR 21

AULNENEICALION ...t 21

AULNOMIZALION ..eeviiiei e 22

V. CDM INPUL / OUEPUL LAYESeeieeiiieeeee et et e e e et eeenae e eees 23
VI, CDIM U SEIVE .ttt ettt e e ettt e oo e e e ettt ettt e e e e e e et e abbb e e e e e e e eeanraan s 24

List of Figures

1. An overview of the main CDM COMPONENESuuuiiiiiiiieieiiiee et e e Vii
2. A UML Package diagram showing the CDM packages and their members.cceeviveeiinnnnnn. 4
4.1. An overview of the cdm PersiStenCe layErviiiiiiiie e 11
7.1. An overview of the CAM SEIVICE TAYEN ... oiiiiii e e 17

List of Tables

41 1 CAENt i t yDa0 MENOUSuiiieiieeee et 10
5.1. 1 Versi onabl €Dao MENOASc.oiviiiiiiii e, 14
A T BT Y I oT oI 11151 00 o L PP 18
7.2. 1 Versi onabl €Servi C& MENOUScouuiiiiiiee e e 18

Preface

EDIT's Internet Platform for Cybertaxonomy is a distributed computing platform that helps taxonomists
do revisionary taxonomy and taxonomic field work efficiently and expediently via the web. At the core
of the platform lies a common data model to enable interoperability between the different components.
The model describes all the commonly used data that is dealt with in the platform, and therefore covers
taxonomic names and concepts; literature references; authors; (type) specimen; structured descriptive data;
molecular data; related (binary) files such asimages or compiled keys; controlled vocabularies and terms;
and species related content of any kind like economic use or conservation status.

The cyberplatform consists of interoperable but independent components. Platform components can take
the form of software applications (desktop or web-based) for human users or (web) services intended to
be used by other software applications. The platform as envisioned does not have a single user interface
or website; rather, it is a collection of interacting components which may be combined and assembled
according to the task in hand. To facilitate the development of core CDM Applications such as the CDM
Community Server, the CDM Dataportals, and the Taxonomic Editor, an implementation of the CDM has
been created in thejava programming language. In addition to CDM model classesbeing modelled asplain-
old-java-objects (pojo's), a set of java components has been created that provide common services across
all java applications using the CDM. They serve as the basis of core components of the Internet Platform
for Cyberplatform and also allow the devel opment of other applications using the CDM by providing basic
functionality that can be extended for a particular purpose.

The CDM Library, asit isknown, consists of four major modules that can be used by any java application
based on the CDM. These libraries are used as the foundation of the Taxonomic Editor and the CDM
Community Server. In addition aweb application (the CDM Community Server) is documented here, as
its components can be re-purposed or extended by other web applications based on the CDM.

Vi

http://en.wikipedia.org/wiki/Plain_Old_Java_Object

Preface

Figure 1. An overview of the main CDM Components

Tax Editor

Drupal
EclipseRCF

Dataportal

Data
Transtar

ﬂqec:t

- ~domain model

Service

Client

= assambled complax

domalin object

ramote AP

same
Hibernate e =
- X [11]
Session £ sk
= = =
b g -
Y H

cdmlib-services

cdmlib-model

domain modsl

oTo
baundany

dafinition

utils cdmlib-commons

ZDOM Datasource
mysgl, oracle, posigres, sglsener

The overall architecture of the EDIT Internet platform for Cybertaxonomy, showing the core components
of the CDM Java Library, and their use by desktop (Taxonomic Editor) and web-based (CDM Dataportal,

CATE) applications.

Vii

Preface

This reference documentation is aimed at anyone who would like to understand the software components
that make up the core of the cyberplatform; the CDM Java Library and the CDM Server application. More
generic information about the applications that make up the cyberplatform, information for end-users of
specific applications, and information on the EDIT project itself are beyond the scope of this document.
More information about EDIT can be found on the EDIT website, and more information on the specific
software applications produced by EDIT can be found on the Work Package 5 website.

viii

Part |. Getting Started

This part of the reference documentation aims to provide simple step-by-step instructions to enable application
developers to start using the CDM Java Library in their java application. To do this, we will create a small toy
application. The CDM Java Library is packaged and published using the Apache Maven software project managment
and comprehension tool. To make life easier, well use maven to create our application too. Assuming that Maven
(2.0.x+) installed, we begin by creating a new maven application (substituting the group id, artifact id, and version
of our application):

nmvn ar chetype: create -Dgroupld=org. myproject -Dartifactld=myapp -Dversion=1.0

The next step isto add the EDIT maven repository to your maven project object model or pomfile, thus:

<repositories>
<repository>
<i d>Edi t Reposi tory</i d>
<url >http://wp5. e-taxonomny. eu/ cdm i b/ mavenr epo/ </ url >
</repository>
</repositories>
</ proj ect >

We also need to add the specific dependency that we would like our project to include.

<dependenci es>
<dependency>
<gr oupl d>eu. et axonony</ gr oupl d>
<artifactld>cdmib-services</artifactld>
<version>1. 1. 1</ versi on>
</ dependency>
</ dependenci es>
<repositories>

In most cases, application developers will wish to include the cdmlib services (which include the data model and
persistence layer too). In some cases, devel opers might wish to use components from the cdmlib-io and cdmlib-remote
packages too. New releases of the CDM Java Library are published in the EDIT Maven Repository, and maven will
download and use these artifacts automaticaly if you change the version number of the dependency specified in your
pom file.

All that remains is to set up the cdmlib services within the application context. The CDM Java Library is uses the
Spring Framework to manage its components. Whilst it is not mandatory to wire the CDM services and DAOs using
Spring, itiscertainly easier to configure your application thisway. A minimal applicationContext.xml (placedinsr c/
mai n/ r esour ces) file might look like this:

<i nport resource="cl asspat h:/eu/ et axonomy/ cdm services.xm" />

<bean i d="dat aSour ce"
| azy-init="true"
cl ass="eu. et axonony. cdm dat abase. Local Hsql db"
init-method="init"
dest r oy- met hod="dest roy" >
<property nane="driverd assNane" val ue="org. hsql db. j dbcDriver"/>

<property nane="usernane" val ue="sa"/>
<property nane="password" val ue=""/>
<property nane="start Server" val ue="true"/>
<property nane="silent" val ue="true"/>

</ bean>

<bean i d="hi ber nat eProperties"
cl ass="org. spri ngf ranewor k. beans. fact ory. confi g. Properti esFact or yBean" >
<property nane="properties">
<props>
<prop key="hi bernate. hbnRddl . aut 0" >cr eat e- dr op</ pr op>
<prop key="hi bernate. di al ect">or g. hi bernat e. di al ect. HSQLDi al ect </ pr op>
<prop key="hi bernate. cache. provi der _cl ass">or g. hi ber nat e. cache. NoCachePr ovi der </ prop
</ pr ops>
</ property>
</ bean>

The first element imports the cdmlib service definitions. The two other beans supply a data source and a properties
object that the CDM library uses to configure the hibernate session factory and connect to the database. In this case,
we're using an in-memory HSQL database, but the CDM can be used with many other databases. The only thing left
to do isto start using the CDM services. In real applications, CDM services may well be autowired into components
using Spring or another dependency injection mechanism. To keep this example simple, we'll initialize the application
context and obtain a service programatically.

Appl i cati onCont ext context = new Cl assPat hXm Appl i cati onCont ext ("applicationContext.xm");
| NameSer vi ce nanmeService = (I NanmeService)cont ext. get Bean("nanmeServi cel mpl ") ;

Bot ani cal Nanme bot ani cal Nane = Bot ani cal Nane. Newl nst ance(Rank. SPECI ES()) ;
bot ani cal Nane. set GenusOr Uni nomi al (" Arum') ;

bot ani cal Nane. set Speci fi cEpithet ("macul atum');

UUI D uui d = naneServi ce. saveTaxonName(bot ani cal Nane) ;

Systemout. println("Saved \' Arum macul atum ' under uuid " + uuid.toString());

In this smple example, we've covered the basics of using the CDM Java Library. We created a simple maven project,
and added the repository and a single dependency to our pom file. We then created a simple application context that
used the default CDM configuration, and specified a couple of objectsthat allowed the CDM to connect to a database.
Finally weinitialized these services by loading the application context, and then retrieved a specific service, and used
it to persist a new taxonomic name.

Part II. Common Data Model

The Common Data Model (CDM) is the domain model for the core EDIT cyberplatform components. The CDM is
primarily based on the TDWG Ontology and in most cases there is concordance with relevant TDWG standards such
as Taxon Concept Transfer Schema (TCS), Structured Descriptive Data (SDD) and Access to Biological Collections
Data (ABCD).

The CDM differsfrom the TDWG standardsin its purpose: it isintended to serve as the basis of software applications
in the cyberplatform (e.g. the taxonomic editor, the CDM Dataportals) rather than being a standard for data exchange
between any resource containing biodiversity information. Whilst it is certainly possible to exchange data as CDM
domain objects serialized as XML or JSON (the CDM Server and the CDM Dataportals do this), the common data
model is not intended to replace existing TDWG standards as a genera purpose exchange standard. It is possible to
convert data held in a CDM store into a relevant TDWG standard for exchange and in some cases this may be the
desired route for data held in the CDM (e.g. for exchange with an application that is not part of the cyberplatform, but
which is capable of understanding datain a TDWG standard).

Thusthe CDM isintended for use as

* A domain model for applications, particularly those that enable taxonomists to do revisionary taxonomy and
taxonomic field work

» A standard for exchange between applications that are part of the EDIT Internet Platform for Cybertaxonomy

In terms of scope, the CDM covers information core to the vision of the cyberplatformi.e. descriptive and revisionary
taxonomy, including taxonomic fieldwork :-

» Taxonomic names and nomenclature, typification

» Taxonomic concepts and relationships between accepted names and synonyms, including the placement of the same
taxonomic concept in different taxonomic hierarchies.

* Specimens and Observations of individual organisms, their collection, location, processing and taxonomic
determination.

* Structured and unstructured information about names, taxa, and specimens.

In addition to this core area, the CDM covers some related domains that are important:-

* Literature

» People, teams of people and ingtitutions in various roles (i.e. as authors, collectors, artists, rights holders etc)

» Media(images, video and audio files, plus more taxonomy-specific media such as phylogenies and compiled keys)
» Molecular data, such as DNA sequences and loci

As you might expect, there are also a number of data entities representing controlled vocabularies, identity of users

(and their roles and permissions), and ancillary data common to al major classes such as multilingual text content,
annotations and markers.

http://wiki.tdwg.org/twiki/bin/view/TAG/LsidVocs
http://www.tdwg.org/standards/117/
http://www.tdwg.org/standards/117/
http://www.tdwg.org/standards/115/
http://www.tdwg.org/standards/115/

Figure 2. A UML Package diagram showing the CDM packages and their members.

pkg Model Overview

Conmmon

J

taxon

name

oCouETence

= Annotata bie Entity
Annotation

AnnotationT ype

Corbase

Credit

De faultT enninitializer
DefinedTemBase
EventBase

Extendon

ExtendonType

Figure

GrantedAuth ot m pl

G raup

HentifiableE ntity

Ke yword

Language
LanguageString
Languagestrng Base

LSID

LS1D&uthority

LSIDWDSLL ocator

M arker

h arkerT ype
MultilanguageT ext

Multil anguageT extHelper
MoDefinedTenn ClasException
Cidered TemmBase
OrderedT enn Vocabulary
Original Source
package-info

Patiallz=tT voe
PerdstentMultiLanguag eT ext
PerdstentMultiLanguag eT extT yoe
ReferencedEntityBase
Relationship Base
Religtionship Termba se

Re pre sentati on

StripHtm IBridge

TemBase

Term LanguageCom parator
Tenn vocabulary
TimePeriod

Ussr

ULIDU==Tyne

Ve rsiona bleE ntity

wrong TennT ypeE xception
WSDL DefinitionUsze T ype
o CcimBase

o DefinedTem

())))) T T T T))) T O O T T T))) T O T T)) T T))

o Event

o MtentifiableE ntity
oy LogdabieTem

o Multilangua ge Text
o IParsa ble

o ReferencedEntity
oy Related

= SSouted ble

] init

Symionym
Synonym Relati onship

Taxon
TaxphBa se

T axonComparator
T axonRelationship
TaxonRelationshipType

Synonym Relati onship Type

location

[

TemLoader
TemmiotF oundE xception
o Teminitializer

o Temiogder

frarn corrron)

Cortinent

Mam edares

Mam edfreal evel
Na-rnedAreaType
Point
Referencesysem
Towg Area

Wiate tho dyOrCountry

media

AudioFile
Hentifia bie MediaEntity
ImageFile

Media

M ediaR epre sntation

M ediaR epre sentationP art
MovieFile

Referen cedMedia
Rights

RightsT emm

oy MediaDocy mented
—p MediaEntity

agent

Address

AgentBase

Cortact

Inditution

Inditutional Membersip
InditutionT ype

P erson

T eam
TeamPersonBase
wap Nomenciaturaid uthor

v iew

Wieww

BactetialMame
BotanicalMame
CultivarPlartName

Hom otypical Group
HybridRelationship

HyhridR elationship Type
Mam eRelationship

Mam eRelationshipType
MameT ypeDesignation
Mam eT ypeDesignationSt atus
Mom enclatural Code

Mom enclatural Status

Mom enclatural StatusT ype
MonviralMame

Rank

SpedmenT ypeDedgnation
SpedmenT ypelbedgnationStatus
TaxoniNawme Ba se

Type De signationB ase
TypeDedgnati onStatuBase
WiralName
Zoologicalhame

o {Typele signation

reference

Aticle
BibtexE ntryType
Bikte:Reference
Book
BookSedion
Collrd
Database
Geneic
InProceedings
Jourrial
Map
Mom endatural ReferenceHel per
P atent

P ersonal Communication
PrintedtinitBase

PrintSeties

Proceedings

PublicationBa se

Publisher

ReferenceBase

Report

SectionBase
StrictRefers noe Ba se

Theds

WehPage

o Iomenciatural Refere nee

= flFolume Refete hee

Collection
DerivationEvert
DetivationEvert Type
DetivedUnit

De tive dUinitBase
DeterminationE vent
Determinationtd odi fier
FieldObsarsation
Fosdl

GatheningE vent
Living Being
Chservation
Presstvationtet hod
Spedmen

Speciren kDbsenationBa se

description

AhsenceTerm
CategoricalData
CommanTaxonkiam e
DescuptionBase
DescuptionElement Base
Diigtri buti on

Feature

Featurehlode

FeatureT ree
ldentificationkey
Individualstsodation

M easurementUnit

M odifier

Prese nced bseh ce TermbBase
PresncaTem
GuantitativeData

Scope

Sex
SpecimenDescription
Stage

State

StateData
StatisticalMesaire
StatiticalMeasurem entvalue
TaxonDesciption
Taxoninteradtion
TaxonMameDesoiption
TextData

T exdF onm at

molecular

= DnaSample
= GenB ankAccession

= FPhdogeneticTree
= Sequence

Locus

Chapter 1. Base Classes

Almost all classesin the CDM implement | CdmBase, an interface that specifies common attributes which
are:

package eu. etaxonony.cdm nodel . cormon;

public interface | CdnBase {

/**

* Returns local unique identifier for the concrete subclass
* @eturn

*/

public int getld();

/**

* Assigns a unique local IDto this object.

* Because of the EIJB3 @d and @=neratedVal ue annotation this id will be
* set automatically by the persistence framework when object is saved.

* @aramid

*/

public void setld(int id);

public UU D get Uuid();
public void setUui d(UU D uuid);

public DateTi ne getCreated();

/**

* Sets the timestanp this object was created.
*

* @aram created

*/

public void setCreated(DateTinme created);

public User getCreatedBy();

public void setCreatedBy(User createdBy);
}

Although al instances have a primary key (i d) that is used by any database software, this should not be
used to refer to the entity in an application. Instead, a surrogate key (uui d) is used to identify entities.
Both values are auto-generated, uui d when the object is created, i d at the point the object is persisted
(through acall to save or saveOr Updat e).

Throughout the CDM, temporal data is represented using the Joda Time API rather than the standard
java Calender implementation. All CdmBase classes have a property that gives their time of creation
(cr eat ed, populated automatically), and the User that created the object. The user isretrieved from the
security context automatically by the persistence layer (for more on security in the CDM, authentication
and authorization, see the section on security). For those applications that do not wish to use the security
infrastructure, the User can a so be set explicitly by the application.

Base Classes

Versionable Entities

Almost all entitiesin the CDM are subclasses of Ver si onabl eEnt i t y. This means that the changing
(persistent) state of an entity through time can be recorded in the database, and recovered. Thisis quite a
complex ideaand is covered in full in the chapter on versioning. Versionable entities have two additional
properties: updat ed, that holdsthe date-time when the object was|ast made persistent, andupdat edBy,
that provides the user that last updated the entity. Both work in an identical way to cr eat ed and
cr eat edBy.

Data model implementation and patterns used
across the CDM

It isworth touching on acouple of common patterns used inimplementing the CDM injava: privateno-arg
constructorsandprotected accessto collection setters. The ORM technol ogy used inthe CDM requiresthat
no-arg constructors exist, and likewise it requires that collections have setter methods as well as getters.
However, it is good practice to prevent client application access to these methods to prevent application
developers inadvertantly causing mischief (for example, by incorrectly implementing a bidirectional link
between a parent and child object).

To instantiate a new CDM entity programmatically, application developers must use one of the public
static factory methods provided by the class. Changing the state of single properties is achieved through
normal use of getters and setters. In the case of properties that extend j ava. util . Col | ecti on
orjava. util . Map, these collections can be changed through addX and r enroveX, where X is the
property hame rather than set X.

Chapter 2. Annotations and Markers

Many entities in the CDM extend Annot at abl eEntity. This class contain two properties
annot ati ons and nar ker s. Annot at i ons represent short (currently 4096 characters) statements
made by users about the object. Mar ker s are binary (true or false) flags set on an object - markers
are be typed using the Mar ker Type vocabulary alowing users to mark objects as NOT_CHECKED,
COMPLETE or any other term.

Chapter 3. Identifiable Entities

titl

Likely to change

Globally unique identifiers, their use and implementation are still an unresolved topic. The
implementaton of objects that are identifiable and resolvable in a global sense must, given an
open world, reflect the standards and best practices being used by the community as a whole.
Consequently this area of the CDM islikely to change to reflect this.

Some entitiesin the CDM extend | dent i fi abl eEnti ty. Ingenera thereisone or two abstract base
classesthat extend | dent i fi abl eEnti ty ineach package. These classes represent important objects
that an application might want to share with another application (and hence, publish globally unique
identifiersfor).

Current implemetation of the GUID inthe CDM is based on the LSID Resolution Service implementation
of the CATE project. Each 1 dent i fi abl eEntity hasan| si d property. See the section on GUID
Resolution to see how the CDM Java Library makes it easier for you to manage and publish your data.

eCache and cacheStr at egyCGener at or

Classes that extend | dent i fi abl eEntity have atitl eCache attribute. This property is used
represent the object (for example, in a list of objects or the title for a page displaying metadata about
that object). Thetit| eCache is aso used by default when sorting lists of entities. Applications are
free to use other properties or combinations of properties in representing objects and can supply their
own implementations of the interfaces in the eu.etaxonomy.cdm.strategy.cache package. If you dowish to
supply custom cache strategies, you will need to inject them into your data entities, overriding the default
strategy (using something like Spring's spring-managed configuration mechanism).

Recording Provenance using ori gi nal Sour ce

Indicating ownership and use using ri ght s
property

Identifiable entities are significant enough that users may wish to indicate ownership of the copyright of
the thing that they represent, or to provide some statement of alicence under which that data may be used.
Thisinformationisheldintheri ght s element asa series of Ri ght objects, each representing asingle
rights statement.

Note that the assertation of rights in the datais not the same as access rights in terms of application-level
security which is dealt with in alater section.

http://www.omg.org/cgi-bin/doc?dtc/04-05-01
http://www.cate-project.org

Part Ill. Persistence Layer

Even the most basic of taxonomic applications have arequirement for usersto be able to save the information that they
create. In addition, acommon component of taxonomic applications is the use of a database to provide users with the
ability tofilter or search their datain one way or another. Some applications will require more advanced functionality,
such as auditing or versioning of data. All of thislogiciscontained in the persistence layer, providing clean separation
between data access and more taxonomy-centric business logic in the service layer.

Persistence is not a ssmple problem to solve, especialy in application developed in Object-Oriented languages, with
large amounts of data, or with many users accessing data at the same time. The CDM Library uses the Hibernate
object/relational persistence and query service as the basis of its persistence layer. Several member projects of the
Hibernate stable, including Hibernate Annotations, Hibernate Search and Hibernate Envers (part of Hibernate Core)
provide the basis of the more advanced persistence-related functionality in the CDM Library. As a consequence some
of the behaviour of the CDM Library is constrained by the underlying ORM technology. The advantage of using an
ORM isthat the same software can be used with multiple database systemswith (almost) no changesto the application.
Currently the CDM Library has been tested with (version numbers & platformsin brackets)

* IBM DB2

o H2 (default local database used by the Taxonomic Editor, 1.0.73)
« HSQLDB

* MySQL (4.1.20: linux; 5.1.32: windows)

 ODBC

* Oracle Database 119

* PostgreSQL

» Microsoft SQL Server 2000

» Microsoft SQL Server 2005

» Sybase Advantage Database Server

In theory, application developers should not need to use the persistence layer directly, but should instead use the API,
which provides a facade over the persistence layer and extra business logic that most applications using the CDM
will require.

http://www.hibernate.org
http://annotations.hibernate.org
http://search.hibernate.org
http://www.ibm.com/software/data/db2/
???
http://hsqldb.org
http://www.mysql.com
???
http://www.oracle.com/database/index.html
http://www.postgresql.org/
???
http://www.microsoft.com/sqlserver/2005/
http://www.sybase.co.uk/

Chapter 4. Basic Persistence

The persistence layer of the CDM primarily consists of a set of data access objects (DAOS). These DAOs
are generic, strongly typed, and form a hierachy that reflects the inheritance of the data entities that they
provide access too. Theroot DAO implements | CdrEnt i t yDao.

Table4.1. 1 CdnEnt i t yDao methods

M ethod

Description

UUI D saveOr Updat e(T newOr Transi en

MEhes &g object persistent, or persists the state
of atransient object.

Map<UUl D, T> save(Col | ecti on<T> ne

WEkEes & calkaction of new objects persistent.

UUI D save(T newentity);

Makes a new object persistent.

UUI D update(T newentity);

Makes changes to atransient object persistent.

UUI D nerge(T newEkntity);

Merges the state of a detached object into the
persisted version.

UUI D delete(T persistentEntity);

Deletes a persistent object.

Li st<T> |ist(d ass<? extends T> ¢
Integer limt,
I nteger start,
Li st <Order Hi nt > or de
Li st<String> propert

Ratzrns a (sub-)list of objects matching the type
cl azz, sorted according to the order hints and
initialized according to the propertyPaths.
rHints,

yPat hs) ;

i nt count (Cl ass<? extends T> cl az

REturns a count of objects matching the type
clazz.

T find(UU D uuid);

Returns an object of type T matching the supplied
uuid if it exists.

Col I ecti on<T> find(Col I ecti on<UU

Betumns alsdllection of objects of type T matching
the uuids supplied, if they exist.

T | oad(UUI D uui d,
Col | ecti on<String> propert

Returns an object of type T with properties
yrif@al izedl pccording to the rules described below.

Set <T> | oad(Col | ecti on<UUI D> uui @
Col I ection<String> pr

Returns a collection of objects of type T matching
theanidsRappisad, if they exist, initialized

according to the rules described below.

bool ean exi sts(UU D uui d);

Returnstrueif there is an object of type T in the
database matching the supplied uuid.

O ass<T> get Type();

Returns the class of objects that this DAO provides
accessto.

10

Basic Persistence

EinmireA1 An nvervian of the cdm nercictenca laver

class dao

«interfaces

«interfaces

contrror. CdmErfifrDan

rare tMomofypicalGrovplao

sinterfaces
mediz: Mediak epreseniafionParfDaa

«interfaces
predia. IMedizRepresenfationDao

«interfaces
eontirer ILsidAufrorifyDao

zinterfaces

comnror Oniginalsonrce 3o EORTAT

«interfaces

G reuplae

«interfaces
eommen.iUserlan

«interfaces
oot ReferencedCnfifyDao

zinterfaces

ﬂ——— descrigfior: iFegfvrelan

«interfaces
descrighion FeafureTreelan

«interfaces
desorigfion: iFeafureModelan

des

«interfaces

ipfiar. | SizfisficalMeasuremenil alvelan

«interfaces
commor MarkerDz0

«interfaces

ponmren i0mtered Term Y ocabuw! arpDao

commror: G ranfed Autharifplan

«interfaces

=7

sinterfaces

common Wersionablelze

«interface:s
eortrrar | Term Vecabul arpDae

sinterfaces
pranreionmerclaferal SizfnsDan)

winterfaces
namel TyoelesignafionDan

«interfaces

sinterfaces

[| contrton Arreiaiablelan

«interfaces

centenlSearchableDae

winterfaces
contirenlDefired TermDag

faxor: i Taxoniodedae

//V

«interfaces
conmitan ILanguageSfingBaselan

winterfaces
commrer. RegreseniziiorDas

winterfaces
contaten.iLanrguagetiningDan

«interfaces

cortron tArrofaiionDan

winterfaces
aanresd TaxonMamelao

«interfaces
faxo i TaxoromnicTreelan

AR

descrigiien: \DescripfionClemeniDas

winterfaces

sintarfaces
contmron. ! TifledDao

«interfaces

cotaron. iderfiffableDao

«interfaces
nredia:MedialDao

«interfaces

agenilAgenilan

«interfaces
faxor ! Taxomlan

«interfaces
oecurrence Collectionlan

«interfaces
oecurrerce l0ecurrercelan

«interfaces

deseripfionr. \Descrigfiondas

«interfaces
reference. |Referencelan

«interfaces
view AudHE veriDao

common ICodmGereniclan

sinterfaces

The DAO hierarchy in the CDM persistence layer. Data Access Objects are strongly typed and their
hierarchy follows the hierarchy of major entitiesin the CDM.

11

Basic Persistence

Object Initialization

DAO methods that return objects, return entities without any relationships initialized by default (to learn
more about initialization of related entities, lazy-loading etc, please consult the hibernate documentation).
Because some applications (particularly stateless multi-user applications with concise units of work i.e.
web applications), may wish to limit the length of transactions, it is important to be able to explicitly
initialize related entities according to the particular use-case. The CDM library alows application
developersto do this on a per-method call basis.

Properties of the root object specified using java-beanslike syntax and passed using the
propertyPat hs parameter will be initidialised before the object(s) are returned and can safely
used. Applications that access other properties (that are part of related entities) outside of the
transaction in which the entity was retrieved (i.e. the entity is detached) are likely to throw a
LazylnitializationExcepti on.Inadditionto specifying propertiesby name, developerscanalso
use an asterisk (*) to represent all *-to-many properties, and a dollar sign ($) to represent all *-to-one
properties of the root entity or arelated entity. Using awildcard terminates the property path (i.e. it isnot
valid syntax to include characters after awildcard in a propertyPath expression - the wildcard must be the
final character in the string).

Listing objects and sorting lists

In addition to allowing single objects and collections of objects matching specific UUIDs to be returned,
the GenericDAO also allows lists of objects of type T to be returned (to allow browsing of the entire
collection of entities, for example). In many cases, applications will wish to restrict the total number of
objects returned to a subset of the total available objects (to reduce resource requirements, or increase
speed of rendering of aresponse, for example). This can be achieved by supplying non-null | i ni t and
st art parametersto restrict the total number of objects returned. These parameters are analogous to the
"limit" and "offset" parametersin SQL and are zero-based (i.e. thefirst result is 0, not 1).

Listsof objectsarereturned sorted accordingtotheor der Hi nt s parameter. Likethepr oper t yPat hs
parameter, Or der Hi nt objects take ajava-beans-style string that indicates the property or related entity
that the list of returned objects should be ordered by, and a Sor t Or der that determined whether the list
is sorted in ascending or descending order.

12

Chapter 5. Versioning

A significant use-case that the CDM aims to support is that of web-based or networked nomenclators,
taxonomic treatments, and other applications that serve authoritative, dynamic data for (re-)use by
taxonomists and other software applications. As an example, a CDM store containing a web-based
monograph or revision of a particular plant or animal family might be referenced by other taxonomists,
or other taxonomic databases that deal with the same taxa. To alow applications to record and resolve
changesto data over time, for example, to allow users or client applications to determine how ataxonomic
classification or species page has been altered since they last accessed that information, the CDM has a
fine-grained versioning functionality that records changes to objects and their relationships, and allows
the prior state of the dataset to be reconstructed.

The CDM useshibernate-envers, aversioning/ auditing library that is part of the hibernate corelibrary. The
versioning functionality islimited by the featuresthat envers provides. Envers stores changesto entitieson
a per-transaction basis. Consequently, it is not possible to resolve changes that take place within the same
transaction. Each transaction results in the creation of an Audi t Event object that provides metadata
about the audit event and also allows the state of the database at that point to be reconstructed (because an
Audi t Event representsapoint in time across the entire database, rather than on a per-object basis). To
learn more about envers and the way that it versions data, check out the presentation given by its creator,
Adam Warski here.

Versioning is enabled by default, and cals to methods like save, updat e, and del et e, will
automatically result in databeing versioned. Application developersonly need to be aware of the existence
of versioning when reading data, and only then if they wish to retrieve an object in its prior state. If
applications wish to retrieve objects from the current state of the database, they do not need to perform
any additional operations.

Because versions of objects are related to a global Audi t Event , and because applications may call
several service layer methods when retrieving data for presentation in a particular view, the CDM stores
the Audi t Event inthe static field of an object called Audi t Event Cont ext Hol der , alowing the
CDM and any application code to discover which particular Audi t Event a view relates to without
needing to pass the Audi t Event explicitly as a method parameter (this pattern is borrows from the
Securi t yCont ext classin Spring-Security).

To query the CDM at a particular Audi t Event , applications need to place the Audi t Event into the
Audi t Event Cont ext Hol der and then call DAO methods as usual.

/1 This would retrieve the current version of the taxon with a nmatching uuid.
Taxon taxon = taxonDao. find(uuid);

/1 Set the audit event you're interested in
Audi t Event Cont ext Hol der. get Cont ext (). set Audi t Event (audi t Event);

/1 This nethod call now retrieves the taxon with a matching uuid at the audit even
/1 or null if the taxon did not exist at that point.
Taxon taxon = taxonDao. find(uuid);

/1 Now cl ear the context
Audi t Event Cont ext Hol der. cl ear Cont ext () ;

/1 Further calls to the persistence layer will return the nost recent objects

Not all DAO methods are available in non-current contexts, either because they require certain
methods that Envers doesn't currently support (such as case-insensitive string comparison), or are across

13

http://www.jboss.org/envers/
http://jboss.org/file-access/default/members/envers/downloads/presentations/envers_devoxx.pdf

Versioning

relationships - currently envers does not support queries that place restrictions on related entities. In some
casesthiswill be addressed infuturerel eases of envers, and the CDM will incorporate these new releasesas
they occur. Some methods rely on the free-text-search functionality provided by hibernate search. Because
hibernate search (and apache Lucene) are based on an optimized set of index files that reflect the current
state of the database, it isnot possibleto search theseindices at prior events. It isunlikely that the free-text-
search functionality will ever be available in non-current contexts. If an application calls such amethod in
anon-current context, an Oper at i onNot Suppor t edl nPri or Vi ewExcept i on isthrown, giving
applications an operation to recover.

Objects retrieved in prior contexts can be initialized using the pr oper t yPat hs parameter, or (if the
transaction is still open) by calling accessor methods in domain objects directly (just as you would with
normal hibernate-managed entities).

In additionto being ableto retrieve objectsat agiven state, the DAOsimplement thel Ver si onabl eDao
interface that offers five specific methods for working with versioned objects.

Table5.1. 1 Ver si onabl eDao methods

M ethod Description

Li st <Audi t Event Recor d<T>> get Audi|REwems al{S of audit events (in order)

which affecledttlegystate lof em entity t.

The events rehtreggbaithet staitt at the

Audi t EveAudn tévtextteBdgb femvard in time
(Audi t Evdrnts3erSt.riCRAARDS) e fiopiRedr s)
intime (Audi t Event Sor t . BACKWARDS).

If the Audi t Event Cont ext issettonull, or

to Audi t Event . CURRENT_VI EWthen all
relevant AuditEvents are returned.

i nt count Audi t Events(T t, Returns a count of audit events which affected the
Audi t Event Sostetesibah entity t.

Audi t Event Recor d<T> get Next Audi t EBAestingani énce method which returns arecord of
the next (relative to the audit event in context).

Audi t Event Recor d<T> get Pr evi ous Audi ¢davemé&r{ce nigthod which returns arecord of
the previous (relative to the audit event in context).

bool ean exi st ed(UU D uui d); Returns true if an object with uuid matching the
one supplied either currently exists, or existed
previously and has been deleted from the current
view.

14

Chapter 6. Free Text Search

The CDM supports high-performance free-text ("google-like") searching of the data that it stores. It uses
the hibernate-search library to integrate the popular apache Lucene search software into the CDM. The
persistence layer includes hibernate-search integration by default, so objects are added to the lucene index
when applications save entities, and the indices are updated when applications updat e or del et e
objects. All fields are converted to lowercase during indexing, and queries are converted to lowercase
during parsing. Several properties are indexed per object type, and it is possible to search individual fields
or combinations of fields. The basic syntax used for free text queries is described on the lucene website.

All classes have a default field that is searched when a field is not specified. In the case of classes that
extend | denti fiabl eEntity thetitl eCache field isused. By default, query strings are broken
into individual terms and objects are returned that match any of the terms (e.g. Acherontia atropos). To
return objects that match all terms, in any order, the an AND operator can be used (e.g. Acherontia AND
atropos). By enclosing individual terms in double quotes, you can specify that terms must appear in a
certain order (e.g. "Acherontia atropos').

To search a specific property, prepend the name of the property, followed by a colon to the query (e.g.
nameCache:" Acherontia atropos"). Properties of related entities can be searched too, provided that they
have been indexed, using java-beans-like dot-notation. For example, to return all references written by
Schott you could use author Team.titleCache: Schott, and to return all publicationswrittenin the 1940'syou
could use either datePublished.start: 194* or datePublished.start:[1940* TO 1949*] (to specify arange).

15

http://lucene.apache.org/java/2_4_1/queryparsersyntax.html

Part IV. APl Methods

Apart from the Common DataModel classes themselves, the CDM Service layer contains the components most likely
to be used directly by applications based upon the CDM Java Library. Thislayer contains aset of basic service objects
that can be used as afacade over the persistence logic.

Chapter 7. Services

The service layer of the CDM contains a set of service objects that are intended to provide basic
query, search and persistence functionality for the CDM objects, plus business logic to support common
tasks. These objects are intended to be singleton services used across the whole application. As
with the persistence layer, the services are strongly typed, generic service objects, with a single
service per (significant base) class. All service classes implement | Ser vi ce and most implement
| Ver si onabl eSer vi ce, providing access to generic base methods to deal with the class.

Figure7.1. An overview of the cdm service layer

class service

cinterfaces
1Service
winterfaces -I::} winterfaces
LocafionService ICommonService
winterfaces
UserDetzilsanager TermService
Gmuparager

winterfacew
aintarfaces Wersiorable Service
WWserfervice

winterfaces

lAnnofafableService \

zinterfaces

winterfaces IMedizService

lAnnofafionService

«interfaces
NdenfifiableEnfify Service

ﬂﬁ__i_\—l winterfaces

IReferenceService

«interfaces
lAgeniService

winterfaces interi
IescriofionServics LA EIEE:
TaxenService
winterfaces cinterfaces
IDecurmenceService MameService
winterfaces winterfaces winterface: wstatic.enumeration»
lAudifEvenfservice DafzhaseService TazanMNodeConparafor ILocationService java

The Service layer in the CDM Java Library. Thereis a service for each major type of data that the CDM
deals with.

17

Services

Table7.1.1 Ser vi ce methods

Method

Description

UUI D saveOr Updat e(T newOr Tr ansi ern

MEkes & pgvy object persistent, or persists the state
of atransient object.

Map<UUI D, T> save(Col | ecti on<T> ne

WEakes & ca kction of new objects persistent.

UUI D save(T newentity);

Makes a new object persistent.

UUI D update(T neweEntity);

Makes changes to atransient object persistent.

UUI D nerge(T newEntity);

Merges the state of a detached object into the
persisted version.

UUI D del ete(T persistentEntity);

Deletes a persistent object.

Li st<T> |ist(d ass<? extends T> ¢
I nt eger pageSi ze,
I nt eger pageNunber,
Li st <Or der Hi nt > or de
Li st<String> propert

Raetzrns a (sub-)list of objects matching the type
cl azz, sorted according to the order hints and
initialized according to the propertyPaths.

rH nts,

yPat hs) ;

Pager <T> page(C ass<? extends T>
I nt eger pageSi ze,
I nt eger pageNunber,
Li st <Order Hi nt > org
Li st<String> proper

Blerns a paged (sub-)list of objects matching the
type cl azz, sorted according to the order hints
and initialized according to the propertyPaths.
erHints,

tyPat hs) ;

i nt count (Cl ass<? extends T> cl az

REturns a count of objects matching the type
clazz.

T find(UU D uuid);

Returns an object of type T matching the supplied
uuid if it exists.

Col I ecti on<T> find(Coll ecti on<UU

Retums aledllection of objects of type T matching
the uuids supplied, if they exist.

T |l oad(UUI D uui d,
Col | ection<String> propert

Returns an object of type T with properties
iyrifddl iredl according to the rules described below.

Set <T> | oad(Col | ecti on<UUI D> uui d
Col | ection<String> pr

Returns a collection of objects of type T matching
theanidsRappisad, if they exist, initialized

according to the rules described below.

bool ean exi sts(UU D uuid);

Returnstrueif there is an object of type T in the
database matching the supplied uuid.

O ass<T> get Type();

Returns the class of objects that this Service
provides access to.

Table7.2.1 Ver si onabl eSer vi ce methods

Method

Description

Pager <Audi t Event Recor d<T>> pageAl

W ekEs & nevs O eciepes$i staiath bieer & sty the state
of atransient objetteger pagesSi ze,

I nt eger pageNumnber,

Audi t Event Sort sort);

Audi t Event get Next Audi t Event (T t)

Makes a collection of new objects persistent.

Audi t Event get Previ ousAudi t Event (

Wakys a new object persistent.

bool ean exi sted(UUI D uuid);

Makes a new object persistent.

18

Services

Paging Resultsets

Inadditionto being abletoreturnresultsasaj ava. uti | . Li st, servicelayer methods can return results
asaPager . Pagers contain a sublist of the total result set, plus a count of the total number of matching
objects. In addition, they contain a number of convenience methods to facilitate the rendering of paged
resultsets, including the generation of labels for pages, based upon the matching objects.

19

Chapter 8. Globally Unique Identifier
Resolution

Likely To Change

Globally unique identifiers, their use and implementation are still an unresolved topic. The
implementaton of objects that are identifiable and resolvable in a global sense must, given an
open world, reflect the standards and best practices being used by the community as a whole.
Consequently this area of the CDM islikely to change to reflect this.

The service layer implements a number of services designed to serve as the basis of a LSID Resolution
Service. This includes implementations of LSI DAut hori tyServi ce, LSI DMet adat aSer vi ce,
and LSI DDat aServi ce. Note that these are service-layer implementations - the http-specific
components can be found in the cdmlib-remote package.

In addition to implementations of the three core LSID Resolution services, the service layer holds the
LS| DRegi st ry, thecomponent that mapsL SID authority + namespace combinationsonto CDM classes.
The implementation assumes that a given authority and namespace will map onto a single CDM base
class, but that authorities may use different namespaces for the same class of objects. In addition, the
LS| DRegi st ry provides a way of controlling which authority + namespace combinations a CDM
application will respond to. For example, it is possible that an application will store objectswith identifiers
published by another (foreign) authority, but doesn't wish to serve metadata about these objects. By only
registering specific authority + namespace combinationsinthe LS| DRegi st r y,aCDM storecanresolve
some combinations but not others.

The three most common methods used arethe get Aut hori t yWSDL and get Avai | abl eSer vi ces
methods that return a javax.xm .transform Source within an Expiri ngResponse
object suitable for rendering in a response to a client, and get Met adat a, that returns an
I 1dentifiabl eEntitywithinaMet adat aResponse. If theauthority+namespaceisnot resolved,
or if the object cannot be resolved, or if the client requests metadatain an unavail able format, an exception
isthrown.

20

Chapter 9. Security and Identity within
the CDM Library

The CDM Library uses the Spring Security sub-project as the basis of its security implementation. The
best place to get information on using Spring Security is the project website.

Spring Security is based around a non-intrusive and non-invasive architecture that can be configured
as needed by a particular application. The CDM Java Library does not have any restricted or protected
methods by default - it is likely that each application based on the CDM will wish to protect servicesin
a different way. The CDM service layer does provide a number of classes that make it straightforward
to set up.

In addition to providing generic components for authentication and authorization, Spring Security provides
anumber of components that can be used by web applications. Details on authentication and authorization
concepts applied to web applications can be found in the documentation for the cdmlib-remote package.

ldentity

Identity in Spring Security is based around the User Det ai | s interface, that provides access to the
principal's username, password, granted authorities and other details. The CDM providesthe User class
that implementsthisinterface. In addition, it providesimplementations of the G- ant edAut hori t y and
a G oup classto alow group authorities (permissions that belong to a group of individuals rather than
belonging to asingle User). Creation of hew user accounts, manipulation of account details, permissions,
and group membership is achieved through an implementation of | User Ser vi ce provided by the
library.

The CDM provides some basic auditing functionality by storing the user account and timestamp each
time an object is modified (and a transaction is comitted). The user details are retrieved from the
Securi t yCont ext Hol der provided by Spring Security. If authentication is set up (see below)
and the user is logged in, then this data will be present automatically in the Securi t yCont ext .
In the case of applications that do not use Spring Security, the User object must be placed into the
Securi t yCont ext explicitly for the user details to be recorded in thisway.

Authentication

To enable authentication within your application, a small number of additional beans need to be added to
the application context, thus (note the use of the security spring-security namespace):

<security:authentication-nanager alias="authenticationManager"/>

<bean i d="daoAut henti cationProvi der" class="org.springfranmework. security.providers
<security:custom aut henticati on-provider/>
<property nane="userDetail sService" ref="user Service"/>
<property nane="sal t Source" ref="salt Source"/>
<property nane="passwor dEncoder" ref="passwordEncoder"/>
</ bean>

<bean i d="passwor dEncoder" class="org. springframework. security. providers. encodi ng.

<bean id="salt Source" class="org.springframework.security.providers.dao.salt.Refle
<property nane="user PropertyToUse" val ue="get User nane"/ >

21

http://static.springsource.org/spring-security/site/index.html

Security and Identity
within the CDM Library

</ bean>

In the case of web applications, application developers will probably want to authenticate users
transparently, using the servlet filter provided by spring security. For desktop applications, you can also
authenticate a user programatically:

User nanePasswor dAut hent i cati onToken t oken = new User nanePasswor dAut henti cati onToke
aut henti cati onManager . aut henti cat e(t oken);

Authorization

Aswith authenti cation, web applications based upon the CDM may find the standard methods provided by
Spring Security or protecting URL s to be sufficient in most cases. To protect service methods, or to secure
desktop applications, developers can also use globa method security by specifying a pointcut expression
that matches the service and method that they wish to protect, and a granted authority that is allowed to
access the method thus:

<security: gl obal - net hod-security>
<security: protect-pointcut expressi on="execution(* eu.etaxonomny.cdm api.servi ce.
</security: gl obal - met hod- security>

22

Part V. CDM Input / Output Layer

This part describes the input output routines:

Part VI. CDM Server

This part describes the cdm-server application:

