
Create a commercial-quality Eclipse IDE, Part 2:
The user interface
Skill Level: Intermediate

Prashant Deva (pdeva@placidsystems.com)
Founder
Placid Systems

17 Oct 2006

This tutorial -- second in this "Create a commercial-quality Eclipse IDE" series --
shows how to create the UI of the IDE. It examines the editor user interface
framework that Eclipse offers, as well as the SourceViewerConfiguration class and all
the various classes related to it, used to implement and configure your IDE's UI.

Section 1. Before you start

About this series

This "Create a commercial-quality Eclipse IDE" series demonstrates what it takes to
create integrated development environments (IDEs) as Eclipse plug-ins for any
existing programming languages or your own. It walks you through the two most
important parts of the IDE -- the core and the user interface (UI) -- and takes a
detailed look at the challenges associated with designing and implementing them.

This series uses ANTLR Studio IDE as a case study and examines its internals to
help you understand what it takes to create a professional commercial-level IDE.
Code samples help you follow the concepts and understand how to use them in your
own IDE.

About this tutorial

Part 1 of this series introduces the architecture of an IDE and shows how to create
the IDE's core layer. This second installment shows how to implement the UI
component. You'll learn the various UI-related objects in Eclipse and how to use and
extend those to provide specific functionality in your IDE. The tutorial contains many

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 25

mailto:pdeva@placidsystems.com
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=Create+commercial-quality+eclipse+ide
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=Create+commercial-quality+eclipse+ide
http://www.ibm.com/developerworks/edu/os-dw-os-ecl-commplgin1.html
http://www.ibm.com/legal/copytrade.shtml

code samples for easy copying into your IDE's code to get that functionality working
in your IDE right away.

Prerequisites

This tutorial assumes a basic knowledge of creating plug-ins for Eclipse and using
the Eclipse Plug-in Development Environment (PDE).

System requirements

To run the code samples in this tutorial, you need a copy of the Eclipse Software
Development Kit (SDK) running Java™ Virtual Machine (JVM) V1.4 or later.

Section 2. Basic editor framework

What's the first thing that comes to mind when you think of a UI for an IDE? The
editor! In fact, everything concerning the UI of an IDE revolves around the editor.
This is particularly true with Eclipse plug-ins because basic UI functionality -- the
workbench, tool bars, etc. -- are already implemented. You simply have to specialize
everything related to your IDE.

We'll begin by looking at the architecture of a text editor inside Eclipse. Eclipse
divides the concept of a text editor into two parts: the document and the viewer.
While the document holds the actual content of the editor, the viewer is responsible
for handling the content display. This nice Model-View-Controller (MVC)-style
separation allows you to separate code that manipulates the content of the editor
from the part that manipulates its display. For example, the parser/lexer runs in the
background thread and communicates only with the document, while the syntax
highlightter can communicate only with the viewer without concerning itself with the
document.

The document

The document represents the "model" part of the text editor framework. It contains
the actual textual content of the editor. It does not concern itself with the display of
the text in any way.

A document allows you to set the actual textual content of an editor and contains
methods to manipulate the content. It is defined by the
org.eclipse.jface.text.IDocument interface. For manipulating documents,
the IDocument interface provides the replace() method:

developerWorks® ibm.com/developerWorks

The user interface
Page 2 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.eclipse.org/pde/
http://www.ibm.com/legal/copytrade.shtml

void replace (int offset, int length, String text) throws BadLocationException

The method takes the offset in the document to replace, along with the length of text
to replace and the text to replace it with. Note that the offsets start at 0. Listing 1
shows examples of using the replace() method to manipulate the content of the
document.

Listing 1. Replace method examples

document.set("Hello"); // set the text of the document to 'Hello'

document.replace(document.length()-1,0 " World");
//Adds the word ' World' to the document

System.out.println(document.get()); //Prints 'Hello World'

document.replace(1,4, "i"); //replaces 'ello' with 'i'

System.out.println(document.get()); //Prints 'Hi World'

The document also provides abstraction for lines. It does this with the help of
positions, which are like stickers to a portion of text in the document. After you attach
a position object to a range of text, the object updates itself automatically while the
user edits the text of the document. For example, if you assign a position at offset 20
and the user adds a character to the document at offset 19, the position object
updates itself to position 21.

One interesting part in the design of the IDocument interface is the support for
multithreaded access. Note that none of the implementations of IDocument allow
for multi-threaded access. Thus, you must take care of synchronizing all the access
to the document yourself. But the designers of IDocument thought about this and
tried to make things just a bit easier for us.

The design of IDocument is made to be "fail-fast." It throws a
BadLocationException exception whenever you try to access text from it that is
outside the bounds of the document. Because this is a checked exception, you must
create a handler for it everywhere you want to access any text from the document. In
this way, you can catch errors in a multithreaded program easily because if any
thread attempts to access text outside the bounds, it fails with an exception -- thus,
effectively notifying you that you missed synchronizing something somewhere. This
functionality also allows you to catch bugs much more easily and earlier in the
development process than if you were to silently let the operation fail.

The viewer

The viewer is responsible or displaying the content of the document and is defined
by the org.eclipse.jface.text.ITextViewer interface. The TextViewer is
built on top of the Standard Widget Toolkit (SWT) StyledText widget. The Viewer
and Document classes are present to provide an MVC separation on top of the
StyledText widget.

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 25

http://www.ibm.com/legal/copytrade.shtml

Now, while the TextViewer is designed as a generic implementation to handle any
kind of text, Eclipse provides a special subclass of it specifically for displaying
source code. This subclass is called the SourceViewer, and it is implemented by
the org.eclipse.jface.text.source.SourceViewer class, which is the
class you will use as your text viewer for this series.

All the UI-related activities for your editor, such as syntax highlighting, text hovers,
and text folding, are handled in the source viewer itself. A SourceViewer uses a
vertical ruler at the left of the text widget to display all the warnings and a +/- icon for
folding, etc., when you open a Java file. It also uses an overview ruler to the right of
the text widget to display all the error and warning markers in the document so you
can navigate to them quickly.

SourceViewer also uses a SourceViewerConfiguration class, which allows
you to selectively plug in customizable UI behavior to fit your needs. You'll see the
SourceViewerConfiguration class in detail later.

The text editor

The previous two classes are part of the SWT/JFace framework, which Eclipse uses.
The org.eclipse.ui.editors.text.TextEditor class ties the document and
the viewer together and inserts Eclipse-specific functionality. Thus, while the viewer
and document abstractions are present in the JFace framework, the TextEditor is
part of the core Eclipse UI text framework. The TextEditor implements the
org.eclipse.ui.IEditorPart class, which -- as the name implies -- denotes to
the Eclipse Workbench that it is part of the workbench and is an editor. An editor is
associated with an IEditorInput class, which defines the protocol of editor input.

For our purposes, you simply need to subclass the TextEditor in your plug-in and
override the methods to customize it according to your plug-in's needs. Using the
TextEditor, you can specify the subclasses of IDocument and ITextViewer
that you use in your plug-in, along with a few other classes discussed later.

To use a text editor in your plug-in, you must specify your subclass of TextEditor
in the plugin.xml file using the org.eclipse.ui.editors extension point, as
shown in Listing 2.

Listing 2. Specify the TextEditor subclass

<extension point="org.eclipse.ui.editors">
<editor

id="my.ide.editor.MyEditor"
class="my.ide.ui.MyEditor"
extensions="c"
icon="icons/fileIcon.gif"
name="My Editor"

/>
</extension>

Attributes:

developerWorks® ibm.com/developerWorks

The user interface
Page 4 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• id -- A unique name used to identify this editor

• class -- The actual subclass of org.eclipse.ui.IEditorPart that
you're using in your plug-in

• extension -- The file extension for file types for which you are using this
editor

• icon -- The icon used to display this file in various views, such as
Navigator and Package Explorer

• name -- A name for this editor type

The TextEditor class is responsible for instantiating and configuring
SourceViewer. Thus, if you're using some custom subclass of SourceViewer or
want to do something special while the source viewer is being initialized, you must
override the createSourceViewer() method in your subclass of TextEditor.
Here's how:

1. Create a subclass of TextEditor.

2. Override the createSourceViewerMethod() method.

3. Create your custom instance of SourceViewer.

4. Call getSourceViewerDecorationSupport to ensure that decoration
support has been created and configured for the viewer.

5. Write any custom configuration code you want.

6. Return the instance of SourceViewer.

Listing 3 demonstrate this process.

Listing 3. Override the createSourceViewer() method

public class MyEditor extends TextEditor
{

@Override
protected ISourceViewer createSourceViewer(Composite parent, IVerticalRuler ruler,

int styles)
{

ISourceViewer viewer = new MySourceViewer(parent, ruler,getOverviewRuler(),
isOverviewRulerVisible(), styles,this);

// ensure decoration support has been created and configured.
getSourceViewerDecorationSupport(viewer);

//do any custom stuff
...

return viewer;
}

}

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 25

http://www.ibm.com/legal/copytrade.shtml

The document provider

Now that you have seen that SourceViewer is instantiated inside the text editor,
you can move on to creation of the document.

The document is created in a separate class of its own called the Document
Provider class. The document provider creates a bridge between a file on a disk
and its representation as a document in the memory. It handles tasks such as
loading files from the disk and saving them, telling whether the document has
changed since it was loaded, etc. Notice the asterisk (*), which appears in the tab of
an editor window when you modify any text inside it: The document provider
generates that notification.

Eclipse defines the document provider in the
org.eclipse.ui.texteditor.IDocumentProvider interface. Several
extension interfaces are also defined for it, with one for almost every release. But
fear not -- the implementation is already done in the subclasses Eclipse provides.
Your job is simply to extend a subclass and override two of its methods -- namely,
createDocument(Object input), which creates and configures a document for
the specific input, and createEmptyDocument(), which creates an empty
document. Although the document provider contains many more methods, 99
percent of the time, you will override only these two.

To create our own document provider class for your IDE:

1. Create a subclass of FileDocumentProvider.

2. Override the createDocument() method.

3. Within the method, call super.createDocument to create the
document.

4. Put code to attach a document partitioner to the document. (Document
partitioners and the code to attach them to the document are discussed
later in the tutorial.)

5. Return the Document.

6. Override the createEmptyDocument() method.

7. Within that method, return a new instance of the subclass of Document
used in your code -- for example, return new MyDocument();.

Listing 4 demonstrates this process.

Listing 4. Create a document provider class

public class MyDocumentProvider extends FileDocumentProvider

developerWorks® ibm.com/developerWorks

The user interface
Page 6 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

{

@Override
protected IDocument createDocument(Object element) throws CoreException
{

IDocument document = super.createDocument(element);

//we will look at document partitions later in this tutorial
if (document instanceof IDocumentExtension3)
{

IDocumentExtension3 extension3= (IDocumentExtension3) document;
IDocumentPartitioner partitioner=

new FastPartitioner(MyPlugin.getDefault().getMyPartitionScanner(),
MyPartitionScanner.PARTITION_TYPES);

extension3.setDocumentPartitioner(MyPlugin.MY_PARTITIONING, partitioner);
partitioner.connect(document);

}

return document;
}

@Override
protected IDocument createEmptyDocument() {

return new MyDocument();
}

}

Now, the question arises: Who creates the document provider itself? The
TextEditor, which is responsible for creating the source viewer and everything
related to the text editor. Therefore, it should create the document provider, too.

To use your subclass of DocumentProvider, override the constructor of
TextEditor in your TextEditor subclass and call the
setDocumentProvider() method with an instance of your document provider.
Listing 5 shows this construction.

Listing 5. Override the TextEditor constructor

public class MyEditor extends TextEditor
{

public MyEditor ()
{

super();
setDocumentProvider(new MyDocumentProvider());

}
}

Section 3. Source viewer configuration

The SourceViewerConfiguration class is where the rest of the functionality
comes together. The SourceViewerConfiguration class provides methods to
access most of the UI-related helper objects the Eclipse framework provides and
that would be useful while creating the editor. Of course, you must create and

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 25

http://www.ibm.com/legal/copytrade.shtml

configure these objects.

Configure your source viewer

Think of the SourceViewerConfiguration class as a sort of control panel or
central hub for your editor, in which you can plug in all the custom UI-related
behavior for your editor, such as syntax highlighting and text hovering, and
individually configure them, as shown in Figure 1. The functionality you don't want to
customize you can simply leave at its default setting.

Figure 1. SourceViewerConfiguration acts as central hub for UI-related
functionality

Most of the time, you must subclass SourceViewerConfiguration and override
the methods for the behavior you want to implement.

The SourceViewerConfiguration class is initialized in TextEditor, so if you
have a custom subclass of it, you must override the initializeEditor() method
in your plug-in's TextEditor subclass and call
setSourceViewerConfiguration with an instance of your
SourceViewerConfiguration subclass, as shown in Listing 6.

developerWorks® ibm.com/developerWorks

The user interface
Page 8 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Listing 6. Override the initializeEditor() method

@Override
protected void initializeEditor() {

super.initializeEditor();
setSourceViewerConfiguration(new MySourceViewerConfiguration());
...

}

Section 4. Document partitions

Partition types

Eclipse allows documents to be partitioned into separate content types. Examples of
content types include:

• Strings

• Single-line comments

• Multiline comments

Figure 2 marks the multiline and Java content partitions in a document.

Figure 2. Partitions in a document

These partitions allow the editor to behave differently, depending on the various
content types. For example, you may not want code completion within strings or
comments, you may not want to highlight keywords that appear within comments, or
you may want to format such keywords differently.

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 25

http://www.ibm.com/legal/copytrade.shtml

Rule-based partitioning

Eclipse provides simple rule-based scanners you can use to partition a document
easily into some of the common content types, such as single-line comments,
multiline comments, strings, and character constants. To define your own partition
scanner, follow this process:

1. Create a subclass of
org.eclipse.jface.text.rules.RuleBasedPartitionScanner

2. Define string constants in the class for different partition types

3. Override the default constructor, and define the various rules

Listing 7 provides an example of this process.

Listing 7. Define a custom partition scanner

public class MyPartitionScanner extends RuleBasedPartitionScanner {

//string constants for different partition types
public final static String MULTILINE_COMMENT= "multiline_comment";
public final static String SINGLELINE_COMMENT= "singleline_comment";
public final static String STRING ="string";
public final static String[] PARTITION_TYPES = new String[] {MULTILINE_COMMENT,

SINGLELINE_COMMENT, STRING};

/**
* Creates the partitioner and sets up the appropriate rules.
*/

public MyPartitionScanner() {
super();

IToken multilinecomment= new Token(MULTILINE_COMMENT);
IToken singlelinecomment= new Token(SINGLELINE_COMMENT);
IToken string = new Token(STRING);

List rules= new ArrayList();

// Add rule for single line comments.
rules.add(new EndOfLineRule("//", singlelinecomment));

// Add rule for strings and character constants.
rules.add(new SingleLineRule("\", "\", string, '\\'));
rules.add(new SingleLineRule("'", "'", string, '\\'));

// Add rules for multi-line comments and javadoc.
rules.add(new MultiLineRule("/*", "*/", multilinecomment, (char) 0, true));

IPredicateRule[] result= new IPredicateRule[rules.size()];
rules.toArray(result);
setPredicateRules(result);

}
}

This example defines rules for single-line and multiline comments and strings. But
how do you connect this scanner to the document?

developerWorks® ibm.com/developerWorks

The user interface
Page 10 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Connect your scanner to your document

Remember the DocumentProvider class? Here is its code again.

Listing 8. The DocumentProvider class

@Override
protected IDocument createDocument(Object element) throws CoreException
{

IDocument document = super.createDocument(element);

//we will look at document partitions later in this tutorial
if (document instanceof IDocumentExtension3)
{

IDocumentExtension3 extension3= (IDocumentExtension3) document;
IDocumentPartitioner partitioner=

new FastPartitioner(MyPlugin.getDefault().getMyPartitionScanner(),
MyPartitionScanner.PARTITION_TYPES);

extension3.setDocumentPartitioner(MyPlugin.MY_PARTITIONING, partitioner);
partitioner.connect(document);

}

return document;
}

Here, you instantiate the FastPartitioner class, which takes a partition scanner
and an array of partition types in its constructor. In the next line, you must pass in a
string that will serve as an ID for this partitioner. Listing 9 shows how this string is
usually defined in the plug-in class.

Listing 9. Define the string in the plug-in class

public class MyPlugin extends AbstractUIPlugin {
public final static String MY_PARTITIONING = “___my__partitioning____”;

private MyPartitionScanner fPartitionScanner;

public MyPartitionScanner getMyPartitionScanner() {
if (fPartitionScanner == null)

fPartitionScanner= new MyPartitionScanner();
return fPartitionScanner;

}
}

Override the methods in your source viewer

You must also override methods in the SourceViewerConfiguration class to
tell it about the custom partitioning and content types. Listing 10 shows such an
override.

Listing 10. Override methods to identify partitioning

@Override
public String getConfiguredDocumentPartitioning(ISourceViewer sourceViewer) {

return MyPlugin.MY_PARTITIONING;
}

@Override
public String[] getConfiguredContentTypes(ISourceViewer sourceViewer) {

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 25

http://www.ibm.com/legal/copytrade.shtml

return new String[] { IDocument.DEFAULT_CONTENT_TYPE, MyPartitionScanner.
MULTILINE_COMMENT ,
MyPartitionScanner. SINGLELINE_COMMENT, MyPartitionScanner. STRING };
}

This way, your partition scanner is connected to the document and takes care of
automatically dividing the document into partitions while you're typing.

Section 5. Syntax highlighting

Let's move on to the more interesting part: syntax highlighting.

The presentation reconciler

For syntax highlighting, Eclipse provides a presentation reconciler, which divides the
document into a set of tokens that define the background and foreground color,
along with the font style for a section of text, as shown in Figure 3. Although this may
sound the same as the document partitions described earlier, it is, in fact, quite
different.

Figure 3. Syntax highlighting in Eclipse text editors

The document partitions define the content types within a document, while the
presentation reconciler divided those individual content types into tokens for sets of
characters that share the same color and font style. For example, while may
represent a keyword token for Java content, but it won't be represented in the same
way within a multiline comment content.

The presentation of the document must be maintained while the user continues to
modify it. This is done through the use of a damager and a repairer. A damager

developerWorks® ibm.com/developerWorks

The user interface
Page 12 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

takes the description of how the document was modified and returns a description of
regions of the document that must be updated. For example, if a user types /*, all
the text in the document up to */ must be repaired. The repairer takes care of
actually repairing the region of the document that the damager output by using the
rules for dividing the region into tokens and the color and font information associated
with the tokens.

Although this process may sound complicated, the Eclipse text framework does
most of the work for you. Here's what you must do.

Step 1: Define a class for color values

Define a class that will hold all the color values for the tokens, as shown in Listing
11.

Listing 11. Define a class for color values

public class MyColorProvider {

public static final RGB MULTI_LINE_COMMENT= new RGB(128, 0, 0);
public static final RGB SINGLE_LINE_COMMENT= new RGB(128, 128, 0);
public static final RGB KEYWORD= new RGB(0, 0, 128);
public static final RGB TYPE= new RGB(0, 0, 128);
public static final RGB STRING= new RGB(0, 128, 0);
public static final RGB DEFAULT= new RGB(0, 0, 0);

protected Map fColorTable= new HashMap(10);

public void dispose() {
Iterator e= fColorTable.values().iterator();
while (e.hasNext())

((Color) e.next()).dispose();
}

public Color getColor(RGB rgb) {
Color color= (Color) fColorTable.get(rgb);
if (color == null) {

color= new Color(Display.getCurrent(), rgb);
fColorTable.put(rgb, color);

}
return color;

}
}

Step 2: Create rules for the document tokens

Next, create a set of rules to describe the various tokens in the document. Listing 12
shows such rules.

Listing 12. Rules for describing document tokens

public class MyCodeScanner extends RuleBasedScanner
{

private static String[] fgKeywords = { "while", "for", "if", "else"};

public MyCodeScanner(MyColorProvider provider) {

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 25

http://www.ibm.com/legal/copytrade.shtml

IToken keyword= new Token(new
TextAttribute(provider.getColor(MyColorProvider.KEYWORD)));

IToken string= new Token(new
TextAttribute(provider.getColor(MyColorProvider.STRING)));

IToken comment=
new Token(new
TextAttribute(provider.getColor(MyColorProvider.SINGLE_LINE_COMMENT)));

IToken other=
new Token(new TextAttribute(provider.getColor(MyColorProvider.DEFAULT)));

List rules= new ArrayList();

// Add rule for single line comments.
rules.add(new EndOfLineRule("//", comment));

// Add rule for strings.
rules.add(new SingleLineRule("\", "\", string, '\\'));
rules.add(new SingleLineRule("'", "'", string, '\\'));

// Add generic whitespace rule.
rules.add(new WhitespaceRule(new MyWhitespaceDetector()));

// Add word rule for keywords.
WordRule wordRule= new WordRule(new MyWordDetector(), other);
for (int i= 0; i < fgKeywords.length; i++)

wordRule.addWord(fgKeywords[i], keyword);
rules.add(wordRule);

IRule[] result= new IRule[rules.size()];
rules.toArray(result);
setRules(result);

}
}

Step 3: Add the scanner to a presentation reconciler

Finally, input the scanner to a presentation reconciler in the subclass of
SourceViewerConfiguration. Specify a DamagerRepairer for each partition
of the document.

Section 6. Reconciler

Remember the lexer and parser you created in Part 1 of this series to scan and
analyze the text in the editor? Now, you will actually run them in the editor.

The Eclipse reconciler

Eclipse provides a framework called the Eclipse reconciler, which allows you to run a
lexer or parser in a background thread. This thread records all the changes to the
text and is invoked periodically.

Note: This reconciler is not the same as the presentation reconciler you worked with
earlier.

developerWorks® ibm.com/developerWorks

The user interface
Page 14 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/edu/os-dw-os-ecl-commplgin1.html
http://www.ibm.com/legal/copytrade.shtml

After you install a reconciler on a text editor, it creates a queue used to record all the
changes that occur to the text. Each change is represented by a DirtyRegion
object, and all these dirty regions are added to a DirtyRegionQueue. A
DirtyRegion object contains the following elements:

• Length of the region

• Offset where the region begins

• Text that was changed

• The content type of the region

This is enough information to run even an incremental parser.

The great thing is that if several edits of the same kind occur sequentially, the
reconciler can merge them into a single DirtyRegion object. For example, if you
are continuously typing into the editor, the reconciler merges the small, individual
dirty regions for each character into a single large dirty region, which can
significantly speed up the analysis, as you won't need to make several passes.

The IReconciler interface

The reconciler is defined by the
org.eclipse.jface.text.reconciler.IReconciler interface, which
basically contains just one method to access the IReconcilingStrategy. The
ReconcilingStrategy is basically an Eclipse abstraction for accepting any type
of reconciler or scanner. It only contains methods that set the document and ask for
a "reconcile" passing in the dirty region. Note that the passing of dirty regions is
enabled only if you set the reconciler to Incremental mode. Otherwise, the reconciler
simply passes in the entire document to you each time. You must implement the
IReconcilingStrategy interface depending on your parser and lexer objects.

Run the reconciler

Here is how the reconciler works along with the reconciling strategy:

1. Instantiate a background thread.

2. Call the reconcile() method on the reconciling strategy with the dirty
region or the entire document, depending on whether the reconciler is set
to Incremental.

3. Wait for an interval of time (say, 500 microseconds [ms]).

4. Return to Step 2.

Listing 13 provides sample code to show how to instantiate and install a reconciler

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 25

http://www.ibm.com/legal/copytrade.shtml

on a source viewer. Again, you must override a method in the
SourceViewerConfiguration class. For this example, you use the
MonoReconciler implementation of IReconciler, which is what you use most of
the time, anyway, unless you have more than one reconciling strategy (in which
case, you must use org.eclipse.jface.text.reconciler.Reconciler).

Listing 13. Instantiate and install the reconciler

@Override
public IReconciler getReconciler(ISourceViewer sourceViewer) {

MonoReconciler reconciler = new MonoReconciler(new MyReconcilingStrategy(),true);
reconciler.install(sourceViewer);
return reconciler;

}

Section 7. Undo Manager

Although in most cases you won't need to implement a custom Undo Manager, it's
useful to know how it works.

Basic Undo Manager functioning

The Undo Manager is defined by the org.eclipse.jface.text.IUndoManager
interface. This interface contains the following methods:

• beginCompoundChange/endCompoundChange() -- This method tells
the Undo Manager that all changes recorded until endCompoundChange
is called are to be marked as "undo" in one piece, thus essentially
accumulating those changes in one big compound change.

• connect/disconnect() -- This method connects to and disconnects
from a text viewer.

• undo/redo() -- This method performs undo/redo operations on the
current operation in its undo/redo stack.

• reset() -- This method resets the undo stack.

• undoable/redoable() -- This method reports whether any undo/redo
operation can be performed.

• setMaximalUndoLevel() -- This method sets the maximum length of
the undo stack.

Another interface -- IUndoManagerExtension -- which has been defined since
Eclipse V3.1, contains a single method: getUndoContext().

developerWorks® ibm.com/developerWorks

The user interface
Page 16 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

An undo context defines the "context" in which the user is currently working. The
Eclipse Workbench uses undo contexts to filter the undo/redo stack, so that when a
user wants to perform an undo/redo operation, only those operations that are part of
the current undo context are available. In other words, a text editor's context is
related to the editor itself, while the resource navigator's context is related to the
workspace model objects, etc.

These interfaces are implemented by the
org.eclipse.jface.text.DefaultUndoManager class, which is returned by
the getUndoManager() method of the SourceViewerConfiguration class.

public IUndoManager getUndoManager(ISourceViewer sourceViewer) {
return new DefaultUndoManager(25);

}

Although you won't have to create a custom implementation of IUndoManager in
most cases, you can override this method in your SourceViewerConfiguration
subclass and return your own implementation. You can also return null if you don't
want any undo/redo functionality in your editor.

Section 8. Auto edits

Remember the way the statements in the Java editor indent themselves
automatically or the ending braces and string quotes appear automatically while
typing? You can do that in your editor, as well, with little effort -- thanks to the
all-powerful Eclipse text framework.

The Eclipse text framework

In Eclipse developer lingo, this functionality is called auto edits. To use auto edits,
you must implement the org.eclipse.jface.text.IAutoEditStrategy
interface, which contains just one method:

void
customizeDocumentCommand(IDocument
\
document,
DocumentCommand
command);

This is called each time you make a change to the document with the
DocumentCommand object containing the information about that change. So, adding
indents or making any change to the text being changed is as simple as modifying
the DocumentCommand object. Listing 14 provides a sample implementation of
IAutoEditStrategy, which automatically puts ending quotation marks for strings

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 25

http://www.ibm.com/legal/copytrade.shtml

and character constants when you type the opening quotation mark and also places
the caret between both the quotes.

Listing 14. Enabling auto edit functionality

public class MyAutoEditStrategy implements IAutoEditStrategy
{
public void customizeDocumentCommand(IDocument document, DocumentCommand command)
{

if(command.text.equals("\"))
{

command.text = "\"\";
configureCommand(command);

}
else if(command.text.equals("'"))
{

command.text = "''";
configureCommand(command);

}
}

private void configureCommand(DocumentCommand command)
{

//puts the caret between both the quotes

command.caretOffset = command.offset + 1;
command.shiftsCaret = false;

}

}

Listing 15 shows a more elaborate example that automatically inserts an ending
brace (}), along with the correct indentation of the line.

Listing 15. Automatically insert an ending brace and indentation

public void customizeDocumentCommand(IDocument document, DocumentCommand command)
{

if (command.text.equals("{"))
{

int line = document.getLineOfOffset(command.offset);
int indent = getIndentOfLine(document, line);
command.text = "{" + "\r\n" + indent + "}";
configureCommand(command);

}
}

public static int findEndOfWhiteSpace(IDocument document, int offset, int end)
throws BadLocationException

{
while (offset < end) {

char c= document.getChar(offset);
if (c != ' ' & c != '\t') {

return offset;
}
offset++;

}
return end;

}

public static String getIndentOfLine(IDocument document, int line)
throws BadLocationException

{
if (line > -1)
{

developerWorks® ibm.com/developerWorks

The user interface
Page 18 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

int start = document.getLineOffset(line);
int end = start + document.getLineLength(line) - 1;
int whiteend = findEndOfWhiteSpace(document, start, end);
return document.get(start, whiteend - start);

}
else
{

return ";
}

}

This is how the code works:

1. Determine whether the text being added is an opening brace ({). If it is,
go to Step 2.

2. Retrieve the line containing the offset of the document being modified.

3. Pass it to the getIndentOfLine() method.

4. Get the indent.

5. Add the indent, along with the closing brace to the text field of the
DocumentCommand object.

The getIndentOfLine() method works as follows:

1. Retrieve the beginning and ending offset of the line.

2. Send it to the findEndOfWhiteSpace() method.

3. The findEndOfWhiteSpace() method returns the offset of first
character that is not a whitespace, thus effectively returning the indent of
the line.

4. Return the indent.

To use auto edits, you must override yet another method in the
SourceViewerConfiguration class and set the strategies for each of your
document content types, as shown in Listing 16.

Listing 16. Set overrides for the SourceViewerConfiguration class

public IAutoEditStrategy[] getAutoEditStrategies(ISourceViewer sourceViewer,
String contentType) {

IAutoEditStrategy strategy= (IDocument.DEFAULT_CONTENT_TYPE.equals(contentType)
? new MyAutoIndentStrategy() : new DefaultIndentLineAutoEditStrategy());
return new IAutoEditStrategy[] { strategy };

}

Eclipse provides the DefaultIndentLineAutoEditStrategy class to catch all
line breaks and insert an indent on new lines that are the same as the lines before
them.

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 25

http://www.ibm.com/legal/copytrade.shtml

Section 9. The annotation model

Learn how to use the Eclipse annotation model, as well as the annotations in various
rulers.

Using the Eclipse annotation model

You use the annotation model, as its name suggests, to mark ranges of text in a
document. All the errors, warnings, and folding +/- buttons you see inside the Java
editor of JDT are simply visual representations of annotations. Because you will be
using these elements in your editor, too, it's useful to know about the Eclipse
annotation model.

Eclipse defines the annotation model of a document through the
org.eclipse.jface.text.IAnnotationModel interface. The interface
contains the following methods:

• addAnnotation/removeAnnotation() -- Use this method to add or
remove annotations. Annotations are added along with a position in the
document they annotate.

• connect/disconnect() -- Use this method to connect the annotation
model to or disconnect it from the document.

• getPosition() -- This method retrieves the position associated with a
specific annotation.

• getAnnotationIterator() -- Use this method to gain access to all
the annotations that this model manages.

• add/removeAnnotationModelListeners() -- Use this method to
add or remove annotation model listeners. The listeners are notified
whenever the annotation model is modified.

As you can see, the annotation model interface is quite simple, containing methods
for adding and removing text. You do not have to worry about implementing this
interface because Eclipse does it for you.

Eclipse defines the implantation of the annotation model in the
ResourceMarkerAnnotationModel class, which uses the concepts of markers.
Markers are assigned an image and a range of text to monitor. Thus, the icons for
errors, warnings, and those squiggly lines you see in the editor are actually defined
by markers. You can change how these markers appear by going to Window >
Preferences > General > Editors > Text Editors > Annotations in the Eclipse
Workbench.

developerWorks® ibm.com/developerWorks

The user interface
Page 20 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The annotation model is attached to the Document of the SourceViewer when the
TextEditor initializes the SourceViewer. Listing 17 shows a snippet from the
AbstractTextEditor, which demonstrates how this process works.

Listing 17. Excerpt from the AbstractTextEditor

private void initializeSourceViewer(IEditorInput input) {

IAnnotationModel model= getDocumentProvider().getAnnotationModel(input);
IDocument document= getDocumentProvider().getDocument(input);

if (document != null) {
fSourceViewer.setDocument(document, model); //put the model
...

}

Vertical ruler association

When the code has run, it's now the SourceViewer's job to associate the
annotation model with the vertical ruler, as shown in Figure 4.

Figure 4. Annotations in the vertical ruler

Listing 18 shows how the process works.

Listing 18. Associate the annotation model with the vertical ruler

public void setDocument(IDocument document, IAnnotationModel annotationModel) {
...
// create a visual annotation model from the supplied model
...

if (fVerticalRuler != null)
fVerticalRuler.setModel(fVisualAnnotationModel);

}

Listing 19 shows how the text editor creates the vertical ruler itself.

Listing 19. The text editor creates the vertical ruler

protected IVerticalRuler createVerticalRuler() {
CompositeRuler ruler= new CompositeRuler();
ruler.addDecorator(0, new AnnotationRulerColumn(VERTICAL_RULER_WIDTH));
if (isLineNumberRulerVisible())

ruler.addDecorator(1, createLineNumberRulerColumn());

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 25

http://www.ibm.com/legal/copytrade.shtml

return ruler;
}

Thus, the AnnotationRulerColumn, which is added to the ruler, handles the
display of annotation images at proper locations on the ruler.

The overview ruler

The overview ruler appears on the right side of the editor and displays the
annotations for the entire document, as shown in Figure 5, so the user can easily
navigate to it. The types of annotations shown in it are determined by the
SourceViewerDecorationSupport class.

Figure 5. Annotations in the overview ruler

The constructor for the overview ruler takes an instance of IAnnotationAccess,
which provides information about a particular annotation such as its type and the
color in which it is displayed.

Text annotations

The source viewer shows annotations in text using squiggly lines or different
background colors to highlight that portion of text, as shown in Figure 6.

Figure 6. Annotations in the text editor

The preferences for this functionality are also handled by the
SourceViewerDecorationSupport class. Listing 20 shows how the
TextEditor along with the SourceViewerDecorationSupport create the

developerWorks® ibm.com/developerWorks

The user interface
Page 22 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

SourceViewer.

Listing 20. Create the SourceViewer

protected ISourceViewer createSourceViewer(Composite parent, IVerticalRuler ruler,
int styles) {

...
ISourceViewer sourceViewer= new SourceViewer(parent, ruler, fOverviewRuler,

isOverviewRulerVisible(), styles);
fSourceViewerDecorationSupport= new SourceViewerDecorationSupport(sourceViewer,

fOverviewRuler, fAnnotationAccess, sharedColors);
configureSourceViewerDecorationSupport();

return sourceViewer;
}

Section 10. Conclusion

You have learned how to implement some of the UI-related functionality of your IDE
from within Eclipse. This tutorial introduced you to the text editor classes and
examined the role of the SourceViewerConfiguration class as the central hub
for installing most of the UI-related functionality. You even saw the way documents
are divided into partitions and how the annotation model of a document works. You
added syntax highlighting to your editor, along with auto-indenting for braces.

Part 3 of this series introduces more UI objects. It also takes another look at ANTLR
Studio and discusses some of the design problems encountered while creating the
UI of a commercial-quality IDE.

Have fun experimenting with your own IDE.

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 25

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-ecl-commplgin3.html
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• "Folding in Eclipse Text Editors" explains this process.

• "Getting Your Feet Wet with the SWT StyledText Widget" introduces the SWT
StyledText widget.

• "Into the Deep End of the SWT StyledText Widget" shows how to customize the
SWT StyledText widget.

• Take a look at the Eclipse Platform Plug-in Developer Guide for help with
developing Eclipse plug-ins.

• Learn more about the Eclipse Foundation and its many projects.

• For an excellent introduction, check out "Getting started with the Eclipse
Platform."

• Expand your Eclipse skills by visiting IBM developerWorks' Eclipse project
resources.

• Browse all of the Eclipse content on developerWorks.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

• Stay current with developerWorks technical events and webcasts.

• To listen to interesting interviews and discussions for developers, be sure to
check out developerWorks podcasts.

Get products and technologies

• See the latest Eclipse technology downloads at alphaWorks.

• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

• The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

• Get involved in the developerWorks community by participating in
developerWorks blogs.

About the author

Prashant Deva
Prashant Deva is the founder of Placid Systems and the author of the ANTLR Studio
plug-in for Eclipse. He also provides consulting related to ANTLR and Eclipse plug-in

developerWorks® ibm.com/developerWorks

The user interface
Page 24 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.eclipse.org/articles/Article-Folding-in-Eclipse-Text-Editors/folding.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://help.eclipse.org/help32/index.jsp
http://eclipse.org/
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/podcast/
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs/
 http://www.placidsystems.com
http://www.ibm.com/legal/copytrade.shtml

development. He has written several articles related to ANTLR and Eclipse plug-ins,
and he frequently contributes ideas and bug reports to Eclipse development teams.
He is currently busy creating the next great developer tool.

ibm.com/developerWorks developerWorks®

The user interface
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 25

http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites
	System requirements

	Basic editor framework
	The document
	The viewer
	The text editor
	The document provider

	Source viewer configuration
	Configure your source viewer

	Document partitions
	Partition types
	Rule-based partitioning

	Syntax highlighting
	The presentation reconciler

	Reconciler
	The Eclipse reconciler
	The IReconciler interface
	Run the reconciler

	Undo Manager
	Basic Undo Manager functioning

	Auto edits
	The Eclipse text framework

	The annotation model
	Using the Eclipse annotation model

	Conclusion
	Resources
	About the author

