

SEMI-AUTOMATED XML MARKUP OF BIOSYSTEMATIC
LEGACY LITERATURE WITH THE GOLDENGATE EDITOR*

GUIDO SAUTTER, KLEMENS BÖHM
Department of Computer Science, Universität Karlsruhe (TH), Am Fasanengarten 5

76128 Karlsruhe, Germany

DONAT AGOSTI
Division of Invertebrate Zoology, American Museum of Natural History, New York NY

10024-5192, and Naturmuseum der Burgergemeinde Bern, 3005 Bern Switzerland

Today, digitization of legacy literature is a big issue. This also applies to the domain of
biosystematics, where this process has just started. Digitized biosystematics literature
requires a very precise and fine grained markup in order to be useful for detailed search,
data linkage and mining. However, manual markup on sentence level and below is
cumbersome and time consuming. In this paper, we present and evaluate the
GoldenGATE editor, which is designed for the special needs of marking up OCR output
with XML. It is built in order to support the user in this process as far as possible: Its
functionality ranges from easy, intuitive tagging through markup conversion to dynamic
binding of configurable plug-ins provided by third parties. Our evaluation shows that
marking up an OCR document using GoldenGATE is three to four times faster than with
an off-the-shelf XML editor like XML-Spy. Using domain-specific NLP-based plug-ins,
these numbers are even higher.

1. Introduction

Today, there are model organisms with huge bodies of literature increasingly
digitally available. The descriptions of the remaining 1.5 Million known species
alone, however, is scattered in an estimated 10 to 100 Million pages of printed
record in thousands of journals and books. This biosystematics literature is in a
very unique situation within the entire body of literature. Large parts of it are in
a highly standardized structure, e.g. treatments or keys. They contain
information in a very concise form, which is not available anywhere else. Its
main sections comprise the descriptions or treatments of the species (including
character X species data matrices, images and distribution records), tools for
identification (keys), and phylogenies. A description of a species is comparable
to its DNA sequence only at a higher organizational level (11). Therefore this
body of literature offers a unique chance for data extraction and mining for

* Work supported by grant BIB47 of the Deutsche Forschungsgesellschaft and

grant GRT963055 of the National Science Foundation.

biomedical and life sciences when it is transformed into a machine-readable
form. Since all the data in a publication belongs to a particular species or higher
level taxon, the insertion of markup identifying the taxonomic names and
descriptions transforms a text document into a record of a biodiversity database.
The taxon name serves as the unique identifier. Some of these databases are
currently implemented, e.g., ispecies.org, INOTAXA, or Encyclopedia of Life
(12). They target the integration of existing biodiversity data from different
sources. This in turn allows mining and linking data from currently
disconnected data sources such as genomics, behavior or distribution data.
Figure 1a shows an example document as OCR produces it (idealized, no
errors). Figure 1b shows the same document after the markup process.
Obviously, only the markup enables a machine to read the information which
species was collected in which location.

Figure 1a. A legacy document as OCR output (idealized, no character misrecognitions)

Figure 1b. The same legacy document after the markup process.

A first approach towards digital availability and integration is the
community-wide initiative to scan and OCR the biosystematics literature
deposited at the main US and UK natural history museums (Biodiversity
Heritage Library: www.bhl.si.edu), growing taxon based (15) as well as
commercial initiatives (16). This results in pdf and raw OCR-ed documents. The
first step towards machine readability is a cleanup of OCR errors and artifacts
originating from the print layout. The second step is the insertion of structural
markup into the documents, often including a cleanup of structural XML
markup inserted by the OCR. Further steps towards full machine readability of
this body add semantic markup on different levels of detail, e.g., treatments and
scientific names. Currently, the tools for all these steps are vanilla XML editors.

The only automation support for this process so far have been tools to find
and extract scientific names (TaxonGrab (10), FAT (2), and FindIT(13)). These
tools provide good results, but are hard to apply when using a common XML

editor. In this paper, we analyze the requirements on editors intended to support
all the steps from OCR output to full machine readability: OCR cleanup,
structural markup, NLP-based scientific name extraction, markup of the
treatments. In particular, we focus on possible automations of the markup
process. This is in order to reduce user effort as far as possible.

A major difficulty is the integration of manual text editing and NLP. This is
because the former works on characters, while the latter usually works on
sequences of tokens, i.e., regards words as the atomic units of a text. Finally, we
present the GoldenGATE editor, which we have built to implement this difficult
integration. Our evaluation shows that the markup process is three to four times
faster if the user can make use of such a tight integration.

The rest of this paper is organized as follows: Section 2 presents existing
editors and NLP tools, which can be useful for automated detail-level markup.
Section 3 analyzes the markup process and specifies the requirements on an
editing tool supporting this process. Section 4 presents the GoldenGATE editor,
which is intended to comply with these requirements. Section 5 features
experimental results, which demonstrate the feasibility of our new tool. In
Section 6, we conclude with a discussion and an outlook to future work.

2. Related Work

In this section, we give an overview of existing tools and editors, which might
be useful for the markup of legacy literature. We also point to some freely
available NLP tools and libraries, which can be helpful for automating the
markup process as far as possible. While manual markup is not desirable, fully
automated markup solely relying on the NLP on the other hand is not feasible
either: First, the markup accuracy required is higher than the 95 - 98 % provided
by up-to-date NLP tools. Second, applying a sequence of such tools, which
perform different parts of the markup process and build on the results of each
other, is likely to result in a summation of the errors. Think of a noun-phrase
chunker which builds on the output of a part-of-speech tagger. If the latter
produces erroneous tags, the former is likely to produce erroneous output as
well. A sequence of five such tools, for instance, is likely to have an accuracy of
around 98%5 ≈ 90%, which is less than required. Thus, there is a need for
manual correction after each automated markup step (i.e., the application of one
automated tool). This in turn requires an editor tightly integrating NLP-based
automated markup functionality and manual editing and tagging.

2.1. Editors

Before we analyze the markup process, we discuss existing editors, which form
its current basis, and are widely used for handling textual data in general.

General-purpose text editors like UltraEdit (5) are powerful editors for all
kinds of text-based data, e.g., plain text, XML, or programming languages.
Many of these editors natively provide syntax highlighting for XML and for
common programming and script languages. Some also support recording
macros for frequently used editing steps, and for including external components.

On the other hand, most text editors are general-purpose so that they do not
provide any special support for XML markup of text, e.g., some sort of support
for inserting XML tags. This is cumbersome and unnecessary, since the
functional parts of the XML tags could be inserted automatically.

XML editors, like the widely used XMLSpy (3) and Oxygen (4), are built
to support handling existing XML data: DTDs and XML schemas, the XPath
and XQuery query languages, XSLT, etc. They also provide some automation in
creating new tags. But with them, the natural sequence of actions seems to be
building the structure first and then inserting the content. Inserting tags in
existing content is not exactly supported well. Besides the query and
transformation languages included, XML editors rarely provide mechanisms for
automated changes to the content or markup. They are not designed to apply
NLP because it is not a usual part of XML data handling.

2.2. NLP Tools

In the following, we describe some NLP tools which might be useful for
automating the detail-level markup process of legacy literature.

The OpenNLP (6) project hosts a variety of smaller, mostly open-source
projects related to the development of NLP tools. The tools provided are
heterogeneous with regard to purpose, programming platform, and quality.
Among others, the functionality provided comprises text tokenization, part-of-
speech tagging, noun-phrase and verb-phrase chunking, named entity
recognition, and semantic parsing. The former four build on each other and form
the basis for the latter two. The latter are interesting for the detail-level
automated markup, e.g., recognition and tagging of collecting sites, i.e., the
location where a particular specimen has been collected.

GATE (7) is an NLP suite developed by the University of Sheffield. It
offers functions comparable to OpenNLP, but also provides more complex
processing, e.g., for co-reference resolution, and can produce XML output. The
GATE suite also includes Apache Lucene (14) for information-retrieval
purposes and a GUI for visualization. It is relatively easy to develop new

components and include them in the processing pipeline. On the other hand, the
purpose of GATE is NLP research and automated evaluation rather than
document markup and management. While an AnnotationDiff tool is provided
for computing f-Scores from the results achieved with test corpora or evaluation
tasks, GATE lacks any facility for editing the text and the markup of the
documents manually.

LingPipe (8) is a professional NLP suite developed by alias-i. Apart from
tokenization, which works with rules, almost all the analysis functions are based
on statistical models (Hidden Markov Models (9), in particular). This implies
the need for training with pre-annotated data. Once a model is generated from
the training data, it can be applied to annotate documents. The basic idea of
LingPipe is that it can generate and apply models for a wide range of purposes.
Ready-to-use models are available for part-of-speech tagging and named entity
recognition. While LingPipe provides powerful NLP functionality, there is no
user interface. Thus, it has to be included in another program to be accessible in
ways different from the command line.

3. Requirements Analysis

In this section, we analyze the conversion process of digitized legacy literature:
From OCR output to valid XML documents with detailed markup both
regarding structure and ‘semantically’ important parts. Given this, we
summarize the requirements on an editor that supports the user during this
process. We then discuss some additional aspects influencing the design of an
editor for markup of legacy literature.

3.1. The Markup Process

Figure 2 visualizes the digitization and markup process form printed legacy
documents to XML data, as perceived by individuals involved in the process:
First, a user will scan and OCR-process the printed documents. Even the best
and best-trained OCR software achieves 100% accuracy, and old or low-quality
source documents result in lower quality. This means that the output text will
contain a significant number of misspellings and other character-recognition
errors. With regard to later application of NLP tools, these errors are a serious
problem. Named entity recognizers, for instance, often make heavy use of
gazetteers, which will not be useful in the presence of misspellings. Misplaced
punctuation marks are likely to disturb a tokenizer or sentence splitter.

Further problems arise from the page layout of the printed original, which
can include footnotes, captions, page numbers, page border decorations, and so

on. The OCR is likely to mix these parts up with the main text so that the
resulting text is inconsistent.

Figure 2. The process of marking up a legacy document

Consequently, if we want to apply NLP tools for automating parts of the
markup, the process starts with the correction of OCR errors and layout
artifacts. This also induces structural cleanups like re-concatenating hyphenated
words, correcting paragraph borders, or moving captions to the end of the
paragraph enclosing them. An editor should support a user in these actions as far
as possible. Re-concatenating hyphenated words, for instance, is a cumbersome
task if it is done one by one manually, but it automates easily. Punctuation and
capitalization in turn allow checking the structure of paragraphs automatically,
leaving only the ambiguous cases for manual intervention. Once the structural
integrity of a document is restored, the next steps include the markup of
semantic units, e.g., individual treatments, and meaningful parts, e.g., taxonomic
names and collecting locations.

Since the latter are often locations, their markup can be automated: NLP
provides powerful recognition algorithms like the one presented in (1), which
can be applied for the markup of collecting sites. (2) presents an approach for
high-accuracy taxonomic name extraction. Its output can serve as the basis for
automated detail-level markup. Consequently, an editor intended for semantic
markup of legacy documents should allow for integration of existing NLP tools.
It should also provide lightweight interfaces for including additional tools so
that the editor is easy to extend according to the particular automation needs of
the user. Further, for similar documents, a user is likely to apply the same choice
of automated tools in the same order, thus defining a sequence. For easier use of
such a sequence, it is desirable to access it as one tool.

Despite all possible automations, manual editing is indispensable because
NLP rarely achieves 100% accuracy. This is especially important where one
NLP component builds on the output of previous ones: Erroneous input is likely
to induce faulty conclusions, and the errors typically add up. Consequently, an
environment supporting automated NLP-based markup also has to provide
facilities for manual editing of both the text and the markup.

3.2. Requirements

Summarizing the transformation process, an editor intended for the XML
markup of digitized legacy literature has to comply with the following
requirements in order to assist its users as well as possible:

• Automation support for structural cleanup of documents,
• Easy manual editing of both text and markup,
• NLP support for automated markup,
• A lightweight interface for developing and including new NLP tools,

according to the special needs of a specific application,
• Integrated access to sequences of tool.

3.3. Additional Aspects

In addition to the key features listed above, there are some other aspects worth
consideration. Different OCR tools provide different types of additional
information in their output. While some simply produce plain text, others insert
generic XML tags, and yet others provide HTML formatted documents.
Consequently, an editor should be able to make use of any formatting contained
in a document, to unify it for subsequent steps, and still provide good
automation if there is no formatting at all initially. During the editing process, it
is desirable to use some unified, generic markup, which does not depend on an
application-specific XML schema. This is because, first, it is not feasible to
develop generic NLP tools dependent on a specific XML name space. Second, it
may be desirable to transform the completed documents into a variety of
application-specific XML schemas. Since different schemas provide different
types and levels of detail markup, a direct inter-schema transformation may not
be possible in the general case. If the input schema provides no markup for
locations, for instance, a schema-transformation tool cannot introduce such
markup. Thus, an editor needs to support different XML schemas, rather than
only a specific one.

4. The GoldenGATE Editor

In this section, we present and describe the GoldenGATE editor, which we have
built to comply with the requirements identified in the previous section. It
combines automation-assisted markup and text editing with external NLP tools.

4.1. The Document Editor

In the GoldenGATE main window, each document has its own editor tab. We
refer to such a tab as a document editor. The markup of legacy literature

includes editing both the XML markup and the document text. Experience with
standard XML editors like XMLSpy shows that editing documents is
cumbersome if there are too many XML tags. This is because the tags are in the
way of a concise view on the textual content. On the other hand, editing XML
markup is unnecessarily cumbersome in an editor that supports plain text editing
as well. This is because the XML tags have to be inserted in the text character
by character. An editor in turn could automatically produce the functional parts
of the tags, i.e., the XML-specific characters around the element names and the
attribute values. Consequently, the editing functions for XML markup on the
one hand and for textual content on the other hand are distributed to two
different editor views in GoldenGATE. Thus, a document editor has three sub-
tabs: An annotation editor, a plaintext editor, and, in addition, an XML view,
which provides no editing functionality, but a view on the document as nicely
indented and laid-out XML.

The annotation editor (Figure 3) provides automation assistance for manual
XML tagging. The buttons on the left invoke recently used functions, and user-
defined ones, i.e., Macros. The checkboxes on the right allow showing and
hiding individual tags by name. The annotation editor uses a token-based data
model, which treats a word as an atomic unit, for two reasons: First, a user will
insert XML tags between words in the very most cases. Second, almost all NLP
tools work on tokens rather than on characters. Consequently, an interaction that
is based on selected text, e.g., enclosing a passage of text in a new tag, will
automatically affect complete words, even if only a part of them is selected.

Figure 3. The annotation editor.

Enclosing a sequence of words in an XML tag is easy and intuitive in the
annotation editor: First, select the words to enclose in the new tag. Second, right

click and select Annotation in the context menu. This will open a prompt for
entering the tag name. In addition, the context menu offers the most recently
used tag names for instant selection. The annotation editor also provides
functions for joining and splitting tags. This is helpful for, e.g., correcting
structural markup generated by OCR software. In addition, it contains
functionality for automatically tagging paragraphs, and for automated cleanup
of their inner structure, including the re-concatenation of hyphenated words.

The text editor provides editing functionality known from standard text
processing tools. Because editing textual content is cumbersome if it is spread
out between several XML tags, the text editor hides all tags to provide a concise
view on the document content.

4.2. Integration of External NLP Tools

As discussed in Section 2, NLP provides powerful tools for extracting
meaningful phrases and word sequences from text, which are well suited for
detail-level markup of legacy documents. The GoldenGATE editor provides a
lightweight interface for integrating external NLP tools.

To integrate an individual NLP component into the GoldenGATE editor,
this component needs to implement the so-called Analyzer interface, or it needs
an encapsulating wrapper, which implements this interface. The responsibility
of the wrapper is to translate the token-based data model of the annotation editor
to the data model used by the NLP component. Since most NLP tools work on
token arrays representing the tokens as Strings, this tends to be straightforward.
The wrapper also has to translate the output of the NLP component back into the
data model of the annotation editor. Since most NLP components arrays of
Strings to mark the extracted parts, this tends to be straightforward as well.

A complete suite of NLP tools can bind to GoldenGATE via a wrapper
factory, which implements another interface. The task of such a factory is to
wrap the NLP tools, so that the individual tools need not be wrapped manually.
The most feasible way of using this binding method is to provide a factory
wrapping a common super class of a set of NLP tools. Once a tool is wrapped to
implement the interface, it can simply be packed into a jar file along with the
wrapper. The jar file is subsequently stored in defined location where
GoldenGATE will automatically detect and include the new tool once it is
restarted. In addition, a user can trigger the search for new tools manually.

4.3. Sequencing of Tools – Pipelines

As mentioned in Section 3, a user is likely to apply the same NLP tools to
similar documents in the same order. Thus it is desirable to access such a

sequence as one tool. GATE (7) uses a mechanism called Pipelines for this
purpose. It bundles a sequence of tools and applies them in a specific order.
Borrowing this idea, we have integrated Pipelines in the GoldenGATE editor. A
GoldenGATE Pipeline is a sequence of external or built-in tools. When it
executes, it invokes these tools subsequently. In contrast to GATE, users may
configure a GoldenGATE Pipeline to display the documents for manual
correction after being processed by each tool and before the next one is applied.
This prevents the propagation of errors from one tool to subsequent ones.

4.4. Additional Functionality

In this section, we describe some additional features of the GoldenGATE editor.
Macros allow adding custom functions to the annotation editor. A macro

combines first marking up the selection with a predefined XML tag, and then
applying some automated processing to the content of the newly created tag.
Two possible applications of this mechanism are (a) marking up a paragraph
and applying structural normalization afterwards, or (b) marking up a treatment
and then applying a tool that creates the internal markup of the treatment
automatically, e.g., the ‘nomenclature’ and ‘materials examined’ domains.

Lists provide a straightforward way of applying gazetteers. GoldenGATE
natively provides some lists (stop words, for instance), and new ones are easily
added: GoldenGATE loads them from files or URLs, or extracts them from the
documents, making use of existing markup.

Besides Macros and Lists, GoldenGATE provides a variety of further
features, which we cannot describe here due to space limitations. These features
include tagging functions based on regular expressions, or processing an entire
folder of documents automatically.

5. Preliminary Evaluation

This section features a preliminary evaluation of the GoldenGATE editor, to
quantify its benefit in marking up legacy literature.

5.1. Experimental Setup

Our evaluation criterion is the time it takes a user to mark up a document,
starting with the unmodified output of an OCR tool. Our evaluation is as
follows: A domain expert carries out the task, once using GoldenGATE, and
another time using the 2005 version of the XML editor XMLSpy, to obtain a
reference point. We stress that our test person is not a computer scientist. He has
practical experience with vanilla XML editors, notably XMLSpy. As test
documents, we use three issues of the American Museum Novitates (No 349

(1929), 1396 (1949), and 2257 (1966)), a life science periodical issued by the
American Museum of Natural History. The original hardcopies have been
scanned and OCR processed with Abbyy FineReader. The output contains
HTML markup regarding fonts and structure, but a significant part of the latter
is erroneous. The documents comprise a total of 24 pages (8 pages each) and 12
treatments (4 treatments each). The markup created during the test includes
structural and semantic markup. The latter comprises treatments, taxonomic
names, and collection events.

5.2. Results

Table 1 displays the time needed for the markup process with the two tools
under evaluation. It turns out that GoldenGATE benefits significantly from the
token-based, semi-automated data handling of the annotation editor. The NLP
tools applied to the fine-grained markup of important parts (e.g., collecting
sites) result in an even larger difference.

Table 1. Markup time from OCR output to fully marked-up document (in minutes, time
spent with the individual test documents in brackets)

Editor
Markup Step

XMLSpy GoldenGATE

OCR errors 9 (3, 4, 2) 4 (2, 1, 1)
Structure Cleanup 4 (2, 1, 1) 19 (7, 5, 7)
Treatments 84 (29, 31, 24) 7 (2, 3, 2)
Tax. names 28 (10, 10, 8) 5 (1, 2, 2)
Coll. events 24 (8, 9, 7) 9 (4, 2, 3)

Total 149 (52, 55, 42) 44 (16, 13, 15)
The only step that takes longer in GoldenGATE is the structural cleanup.

This is due to different approach with the two editors: XMLSpy requires to first
remove all the HTML and to insert new structural markup subsequently, while
GoldenGATE transforms and corrects the existing tags. Thus the structural
cleanup becomes an integral part of the structural markup. Summing up the
structural cleanup and markup steps, GoldenGATE (19 + 7 = 26 minutes) is
more than three times faster than XMLSpy (4 + 84 = 88 minutes).

6. Discussion

In this paper, we have introduced the GoldenGATE editor, the first editor
specifically designed and built for the digitization of legacy biosystematics
literature. It supports all the steps from OCR output to full machine readability:
OCR cleanup, semi-automated markup (both structural and semantic), including
the detection of treatment boundaries and the markup of the internal structure of
treatments. It allows the application of automated external markup tools, like
TaxonGrab (10), FAT (2), or FindIT (13) for the markup of scientific names.

Our evaluation has shown that the GoldenGATE editor simplifies and
accelerates the markup process significantly. This advantage results from both
the semi-automated, token-wise XML editing and the integration of existing
NLP tools for automated detail-level markup.

We plan to include more functionality in the future, like better support for
OCR error correction. We also intend to develop additional NLP tools for more
markup automation on the detail level. This includes, for instance, automated
detection and markup of morphological characters and states.

The current version of GoldenGATE is available at http://idaho.ipd.uni-
karlsruhe.de/GoldenGATE/.

Acknowledgements

We thank our US collaborators Terry Catapano, Bryan Heidorn, Bob
Morris, Neil Sarkar, and Christie Stephenson for their interest in our work and
their valuable suggestions.

References

1. A. Mikheev, M. Moens, C. Grover, Named Entity Recognition without
Gazetteers, in Proceedings of EACL, Bergen, 1999

2. G. Sautter, K. Böhm, The Difficulties of Taxonomic Name Extraction
and a Solution, in proceedings of BioNLP, New York, 2006

3. Altova GmbH, www.altova.com
4. <oxygen/>, www.oxygenxml.com
5. IDM Computer Solutions Inc., www.ultraedit.com
6. The OpenNLP project, www.opennlp.org
7. GATE, General Architecture for Text Engineering, gate.ac.uk
8. LingPipe, www.alias-i.com/lingpipe
9. L. Rabiner, B. Juang An Introduction to Hidden Markov Models, in

IEEE ASSP Magazine, Jan 1986, Volume 3, Issue 1, pp 4-16
10. D. Koning, N. Sarkar, T. Moritz, TaxonGrab: Extracting Taxonomic

Names from Text, Biodiversity Informatics, 2005
11. D. Agosti, Encyclopedia of life: should species description equal gene

sequence?, Trends Ecol. Evol. 18: 273, 2003
12. E. Wilson, The encyclopedia of life, Trends Ecol. Evol. 18: 77-80, 2003
13. FindIT, names.mbl.edu/tools/recognize
14. Apache Lucene, lucene.apache.org/java/docs
15. D. Butler, Mashups mix data into global service. Nature 439: 6-7, 2006
16. E. Gillingham, Blackwell launches 3000 years of digitized journal

backfiles. Blackwell Publishing Journal News 15, July 2006.

